Synthetic and scalable data platform for medical empowered AI
AISym4Med aims at developing a platform that will provide healthcare data engineers, practitioners, and researchers access to a trustworthy dataset system augmented with controlled data synthesis for experimentation and modeling p...
AISym4Med aims at developing a platform that will provide healthcare data engineers, practitioners, and researchers access to a trustworthy dataset system augmented with controlled data synthesis for experimentation and modeling purposes. This platform will address data privacy and security by combining new anonymization techniques, attribute-based privacy measures, and trustworthy tracking systems. Moreover, data quality controlling measures, such as unbiased data and respect to ethical norms, context-aware search, and human-centered design for validation purposes will also be implemented to guarantee the representativeness of the synthetic data generated. Indeed, an augmentation module will be responsible for exploring and developing further the techniques of creating synthetic data, also dynamically on demand for specific use cases. Furthermore, this platform will exploit federated technologies for reproducing un-indentifiable data from closed borders, promoting the indirect assessment of a broader number of databases, while respecting the privacy, security, and GDPR-compliant guidelines. The proposed framework will support the development of innovative unbiased AI-based and distributed tools, technologies, and digital solutions for the benefit of researchers, patients, and providers of health services, while maintaining a high level of data privacy and ethical usage. AISym4Med will help in the creation of more robust machine learning (ML) algorithms for real-world readiness, while considering the most effective computation configuration. Furthermore, a machine-learning meta-engine will provide information on the quality of the generalized model by analyzing its limits and breaking points, contributing to the creation of a more robust system by supplying on-demand real and/or synthetic data. This platform will be validated against local, national, and cross-border use-cases for both data engineers, ML developers, and aid for clinicians’ operations.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.