On-surface generation and characterization under ultra-high vacuum (UHV) of π-conjugated graphenic frameworks that have open-shell electronic structure, π-magnetism, have been an advanced and active area of research since the succ...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto SpiM
Duración del proyecto: 25 meses
Fecha Inicio: 2024-04-10
Fecha Fin: 2026-05-31
Líder del proyecto
SORBONNE UNIVERSITE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
212K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
On-surface generation and characterization under ultra-high vacuum (UHV) of π-conjugated graphenic frameworks that have open-shell electronic structure, π-magnetism, have been an advanced and active area of research since the successful nanoscale fabrication of triangulene in 2017. However, the stability afforded by on-surfae techniques under UHV carries its own bane: products remain on the solid substrate support, limiting yields, and thus their incorporation to more complex functional molecules and devices. Synthesis of pi-magnetic molecular materials (SpiM) aims (1) to contribute new π-magnetic molecules realizable in bulk by solution-phase methods and; (2) to explore their incorporation into functional molecular architectures and devices. SpiM will take advantage of chemistries of closed-shell polycyclic aromatic hydrocarbons, that use bulky functional groups for solubilization—the same functional groups which protect otherwise reactive π-radicals in these open-shell structures—in order to realize π-magnetic molecules in bulk outside the UHV. This would facilitate their incorporation into stimuli-responsive molecular materials (SRMs), complex functional molecular architectures that could allow modulation of spin, or magnetic state, by an external stimuli. Lastly, SpiM will explore their feasibility for OLEDs and Faraday rotators, applications hitherto unexplored in nanoscale on-surface studies under UHV. SpiM will use a combination of synthetic chemistries from different fields; chemical, photophysical, and electrochemical characterization techniques; and device testing/measurement, in order to realize the immense potential of these molecules for applications outside the UHV chamber.