Synergetic integration of BIOteChnology and thermochemical CaTalysis for the cAs...
Synergetic integration of BIOteChnology and thermochemical CaTalysis for the cAscade coNvErsion of organic waste to jet fuel
The reduction of GHG emissions according to the Paris Agreement is particularly challenging regarding the production of green liquid fuels with a high energy density for the aviation sector (drop-in biokerosene). In this context,...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto BIOCTANE
Duración del proyecto: 48 meses
Fecha Inicio: 2022-10-21
Fecha Fin: 2026-10-31
Líder del proyecto
FUNDACIÓN IMDEA ENERGÍA
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
| 7M€
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The reduction of GHG emissions according to the Paris Agreement is particularly challenging regarding the production of green liquid fuels with a high energy density for the aviation sector (drop-in biokerosene). In this context, the BIOCTANE project aims to develop and optimize an innovative process for the conversion of organic waste materials naturally characterized by a high-water content (e.g. food-waste, organic material from the food processing industry) into carbon-neutral market-ready drop-in jet-fuels.
In particular, BIOCTANE project will develop a proof of concept on the synergetic coupling of biotechnological and thermocatalytic processing routes by a disruptive and interdisciplinary strategy that will result in an efficient valorization of the organic wastes into renewable jet-fuel, maximizing the recovery of chemical energy, nutrients and carbon use.
First, the complex organic waste will be converted into platform molecules (acetoin and 2,3-butanediol) by creating a breakthrough link between biotechnological processing of biowaste and hydrothermal gasification technology. Subsequently, a novel one-pot chemical process will be developed by the combination of different catalytic steps through which the platform molecules are converted to jet-fuel range hydrocarbons. Based on an extensive process flow modelling, the process efficiency and the techno-economic requirements for full market integration as well as the environmental impact will be assessed. Best environmental performance, including recovering nutrients for reuse will be aimed for throughout the process development.
Therefore, BIOCTANE will establish a novel pathway involving hybrid processes and multifunctional catalysts, contributing to implement sustainable, secure and competitive renewable energy technologies in Europe, boosting the use of advanced biofuels and with a direct impact on strategic areas like aviation transport