Innovating Works

STEP

Financiado
Symmetry Tests in Experiments with Portable Antiprotons
Our present understanding of particles and their fundamental interactions leaves us with extremely well tested theories in laboratory experiments, however cosmological observations indicate that our models are incomplete. Dark mat... Our present understanding of particles and their fundamental interactions leaves us with extremely well tested theories in laboratory experiments, however cosmological observations indicate that our models are incomplete. Dark matter and dark energy are clearly not contained in our theories, and the baryon asymmetry in the universe cannot be reproduced from the Standard Model with its current parameters. Antiprotons offer the unique opportunity to make high-precision measurements at low energies in the antimatter sector and provide important tests of the fundamental interactions to search for a manifestation of new physics complementary to matter-based experiments. Here, I propose to extend the methods in low-energy antiproton precision measurements by developing a transportable antiproton reservoir. Relocating measurements from CERN’s antiproton decelerator into precision laboratories eliminates limitations from magnetic field noise in the antiproton decelerator hall and improves the precision by at least a factor of 30. I will also implement a novel method for ultra-precise cyclotron frequency measurements based on low-energy thermal-state selection for single antiprotons and quantum non-demolition measurements of the cyclotron energy. This leads to measurements at 300-fold reduced temperature compared to the state-of-art methods. Using these two methods, I will improve the most precise test of CPT invariance in the baryon sector by at least a factor of 70 and demonstrate charge-to-mass ratio comparisons with unprecedented precision. I will also set first limits on the interaction of light dark matter and antiprotons by searching for topological defects by simultaneous measurements of the antiproton cyclotron frequency in two separate experiments. The developments provide also methods to test whether the weak equivalence principle holds for charged antimatter by comparing the gravitational redshift of protons and antiprotons at different altitudes. ver más
31/03/2027
2M€
Duración del proyecto: 89 meses Fecha Inicio: 2019-10-15
Fecha Fin: 2027-03-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2019-10-15
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2019-STG: ERC Starting Grant
Cerrada hace 6 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
HEINRICH-HEINE-UNIVERSITAET DUESSELDORF No se ha especificado una descripción o un objeto social para esta compañía.