Symbolic logic framework for situational awareness in mixed autonomy
"SymAware addresses the fundamental need for a new conceptual framework for awareness in multi-agent systems (MASs) that is compatible with the internal models and specifications of robotic agents and that enables safe simultaneou...
"SymAware addresses the fundamental need for a new conceptual framework for awareness in multi-agent systems (MASs) that is compatible with the internal models and specifications of robotic agents and that enables safe simultaneous operation of collaborating autonomous agents and humans. The goal of SymAware is to provide a comprehensive framework for situational awareness to support sustainable autonomy via agents that actively perceive risks and collaborate with other robots and humans to improve their awareness and understanding, while fulfilling complex and dynamically changing tasks.
The SymAware framework will use compositional logic, symbolic computations, formal reasoning, and uncertainty quantification to characterise and support situational awareness of MAS in its various dimensions, sustaining awareness by learning in social contexts, quantifying risks based on limited knowledge, and formulating risk-aware negotiation of task distributions. These objectives will be achieved in SymAware through (a) logical characterisation of awareness using symbolic methods, (b) quantifying the symbolic reasoning for awareness with spatial and temporal ingredients for decision making, (c) risk awareness via quantified knowledge, (d) quantifying and communicating knowledge awareness, (e) demonstrating awareness engineering in aviation and automotive use cases, and (f) identifying requirements for ethical and trustworthy awareness in human-agent interaction.
The objectives of SymAware address the ""Awareness Inside"" Challenge of EIC by extending and formalising human-based models of situational awareness and by providing a novel conceptual situational awareness framework for MASs that encompasses logical characterisation and integrative formal reasoning of interdependent awareness dimensions including knowledge, spatiotemporal, risk and social dimensions. This will support transitioning to safe mixed operation of autonomous agents and humans.
"ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.