Switchable magneto plasmonic contrast agents and molecular imaging technologies
SWIMMOT will establish the scientific and technological basis for a radically new technique for in vivo molecular imaging based on a switchable contrast agent (CA) and corresponding optical imaging technology. Our CA will be based...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2015-67354-R
SINTESIS LASER DE NANOPARTICULAS TERNARIAS: UNA RUTA ALTERNA...
Cerrado
Photosense
Photoacoustic and fluorescence imaging platform for biosensi...
195K€
Cerrado
PID2019-111436RB-C22
NEW TECHNIQUES FOR MULTIMODAL MOLECULAR ELASTOGRAPHIC IMAGIN...
90K€
Cerrado
CONQUEST
CONQUEST Enabling advanced medical imaging
150K€
Cerrado
NANHEMO
Nanobiosensors for Health Monitoring
30K€
Cerrado
IJC2020-045229-I
The use of nearinfrared-emitting nanoparticles in biomedical...
98K€
Cerrado
Información proyecto SWIMMOT
Duración del proyecto: 58 meses
Fecha Inicio: 2020-05-26
Fecha Fin: 2025-03-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
SWIMMOT will establish the scientific and technological basis for a radically new technique for in vivo molecular imaging based on a switchable contrast agent (CA) and corresponding optical imaging technology. Our CA will be based on novel magnetic core / plasmonic gold shell nanorods with specifically engineered biofunctional shells. We will develop a new magneto-plasmonic imaging technique based on magnetic excitation and plasmonic signal generation to realise multimodal optical coherence tomography / photoacoustic imaging modes. The magneto-plasmonic imaging technique will turn our CA on and off, which will allow complete removal of the imaging background. This discrimination of the background from the CA signal will yield ultra-high contrast molecular imaging. In addition, SWIMMOT, for the first time, will enable in vivo quantification of soluble biomarker concentrations and visualisation down to cellular resolution, which holds the potential to revolutionise molecular imaging and to surpass all current technological paradigms.
These science and technology breakthroughs will enable detection of previously inaccessible in vivo physiology and molecular events, and elucidation of until now poorly understood biological mechanisms through studies in model organisms. This will in turn contribute to a better understanding of normal processes and disease pathogenesis. Thus, SWIMMOT will ultimately lead to earlier disease diagnostics for humans and to the development of new therapy concepts (including drugs). We will apply the SWIMMOT technology for diabetes research and will demonstrate its breakthrough potential for uncovering new biomolecular mechanisms in zebrafish model organisms.