Sustaining Heritage Access through Multivalent ArchiviNg
The aim of the SHAMAN Integrated Project is to investigate and develop a long-term next generation digital preservation (DP) framework and corresponding application solution environments for analysing, ingesting, managing, accessi...
ver más
30/11/2011
Líder desconocido
12M€
Presupuesto del proyecto: 12M€
Líder del proyecto
Líder desconocido
Fecha límite participación
Sin fecha límite de participación.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto SHAMAN
Líder del proyecto
Líder desconocido
Presupuesto del proyecto
12M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The aim of the SHAMAN Integrated Project is to investigate and develop a long-term next generation digital preservation (DP) framework and corresponding application solution environments for analysing, ingesting, managing, accessing and reusing information objects and data across libraries and archives, Three prototypical application solutions will be build on the basis of this framework environment will support the and trialling and validating of the result in scientific publishing, parliamentary archival, industrial design and engineering and finally experimentally also in scientific application domains. To achieve these goals SHAMAN is applying and utilising radically new and promising methods for supporting DP as the core of the approach. Within SHAMAN, the core functions are organized within the SHAMAN reference architecture. Utilizing this architecture the project will create a framework and application development environment supporting the creation of test-beds of Digital Preservation support infrastructures and services. The core services of the SHAMAN framework are constructed by integrating Data Grid (DG), Digital Library (DL), Persistent Archive (PA), Context Representation, Annotation, and Preservation (CRAP) as well as Deep Linguistic Analysis (DLA) and corresponding Semantic Representation and Annotation (SRA) technologies for simple and connected data types establishing, document, media, CAD, and scientific data, knowledge, and information collections. This will result in an unprecedented level of functionality and will lay the foundations for the long-term unification of knowledge preservation and analysis across domains within a distributed grid-based infrastructure.