Sustainable Hydrogen Storage by Advanced Layered Magnesium-based Nanostructured...
Sustainable Hydrogen Storage by Advanced Layered Magnesium-based Nanostructured Alloys
The generation of advanced alloys with extraordinary sustainable, functional performance is a game changer for commercializing advanced manufacturing technologies and is a key issue for the 4th industrial revolution, considering t...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto SHSBALMBNA
Duración del proyecto: 23 meses
Fecha Inicio: 2024-07-01
Fecha Fin: 2026-06-30
Líder del proyecto
UNIVERSITAET MUENSTER
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The generation of advanced alloys with extraordinary sustainable, functional performance is a game changer for commercializing advanced manufacturing technologies and is a key issue for the 4th industrial revolution, considering the environmental issues to reduce CO2 emission, as well. To this end, thermally stable, high-performance bulk nanostructured (nano-layered) nanocomposites containing stable interfaces are highly desirable for hydrogen storage. Within the proposed project, the newly developed accumulative fold-forging (AFF) method shall be applied to enhance the hydrogen storage response of a Mg/Nb alloy based on extreme grain refinement down to the nano-scale and the synthesis of a nano-layered structure. This novel alloy design will assess this synergy between advanced manufacturing by a novel severe plastic deformation (SPD) approach and metal physics as an interdisciplinary topic. First, the advanced layered system will be designed by AFF for nano-grains formation and forced alloying between Mg and Nb. Then, the manufactured new materials shall be characterized in terms of structural features, mechanical properties, and functional behaviour. Third, atomic-scale structural modelling will proceed to simulate sustainable hydrogen storage performance. These experiments may give novel insights into tailoring the pathways toward sustainable microstructural design for optimizing the composition and structure of advanced Mg/Nb nanostructured alloys with extraordinary storage capacity and cyclic stability. Coming from the world-foremost centers on advanced manufacturing and alloy design, I will bring new scientific and technological knowledge to the host university and institute. Meanwhile, practical training at one of Germany’s best universities and research institutes, progressing the current state-of-the-art by developing metal physics of advanced nanostructured alloys and high-quality publications, can prepare me for a professorship position in the EU or NA.