Surfaces for molecular recognition at the atomic level
The overarching aim of the SMALL ITN project is to train Early Stage Researchers in the field of ‘molecular recognition at surfaces’ from fundamental science to novel applications. For this task, SMALL combines European experts fr...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The overarching aim of the SMALL ITN project is to train Early Stage Researchers in the field of ‘molecular recognition at surfaces’ from fundamental science to novel applications. For this task, SMALL combines European experts from surface science, nanotechnology, theory, chemical synthesis, physics, biology and industry, and thus takes a highly integrated approach to the training. The researchers will work within a well-structured scientific programme aimed at molecular recognition, underpinning the next generation of molecular sensors, catalysis, biomimetics, and molecular electronics. The programme of training will foster scientists who, in addition to being specialists in particular branches of molecular nanotechnology, have broad interdisciplinary experience in the experimental and theoretical techniques of molecular nanotechnology. Their hands-on training will be substantiated by a well-developed network training programme which will address both scientific and complementary skills. In their projects, the Early Stage Researcher will explore the nature of the interactions responsible for molecular and atomic recognition and the role that these play in the massively parallel self-assembly of supramolecular nanostructures, using a collaboration of cutting edge experimental and theoretical techniques. They will investigate how to achieve chemical selectivity at surfaces, including enantioselective recognition, by molecular and atomic surface modification as a route to novel catalysis and nanoscale sensors, drawing on expertise across different scientific disciplines and pioneering industrial partnerships.