SurfacE structure Activity Relationship in atomically defined ultrathin film pe...
SurfacE structure Activity Relationship in atomically defined ultrathin film perovskite Catalysts
Due to the intermittency of renewable electricity, conversion to chemical fuel is a necessity for the success of the transition to sustainable energy. A simple and attractive candidate for climate-neutral fuel is hydrogen, which c...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto SEARCh
Duración del proyecto: 31 meses
Fecha Inicio: 2018-04-04
Fecha Fin: 2020-11-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Due to the intermittency of renewable electricity, conversion to chemical fuel is a necessity for the success of the transition to sustainable energy. A simple and attractive candidate for climate-neutral fuel is hydrogen, which can be produced directly through electrolysis. But substantial market penetration by commercial electrolysers has been hindered by the absence of high-activity, stable, inexpensive, and earth-abundant, catalytic materials. To develop and exploit these materials, a detailed understanding of the underlying relationships between catalytic activity and atomic-level surface structure is required, which has so far been unattainable due to often-case undefined surface areas and structures, as is the case for today’s record-performance electrocatalysts, i.e. Ni-Fe (oxy)(hydr)oxides. Therefore, epitaxial, atomically defined Ni-Fe-based perovskite thin film catalysts will be investigated with advanced operando characterization tools (including synchrotron-based scattering and spectroscopy, and scanning probe approaches) to achieve the following objectives:
- Revalidate activity trends found for polycrystalline and amorphous structures, disseminating the influence from the bulk electronic structure (composition), bond lengths, crystallographic orientation and surface termination
- Derive an atomistic understanding of the catalysis reaction and degradation mechanisms
- Deduce design rules for beyond-state-of-the-art electrocatalyst materials and communicate them to the catalyst research and production communities for exploitation in real-world catalyst materials
The results of SEARCh will thus contribute to the goals of development and deployment of low-carbon technologies in line with the EU’s Strategic Energy Technology Plan and the experienced researcher will receive training in innovative, cutting-edge techniques and attain transferable skills, benefitting from a multidisciplinary, international collaboration.