Innovating Works

StoreAGE

Financiado
Surface and Interface phenomena in sustainable energy storage systems
Energy storage systems are a crucial part to enable the transformation of our current economic system into a more sustainable one, to balance the fluctuating nature of renewable electricity production from wind and photovoltaics.... Energy storage systems are a crucial part to enable the transformation of our current economic system into a more sustainable one, to balance the fluctuating nature of renewable electricity production from wind and photovoltaics. There are many potential means of energy storage, that differ in their storage capacity and duration, such as batteries or redox-flow batteries.A common factor in all these systems is the importance of processes on surfaces and interfaces that control the involved chemical reactions and physical processes. To improve the current and develop novel energy storage systems, detailed understanding and insight about these surface and interface processes is required. The proposed Doctoral Network will gain insight into these highly relevant surface and interface phenomena. Advanced analytical techniques will be utilized to directly probe chemical and physical processes, relevant for the respective energy storage systems. Modelling and synthetic approaches will complement the understanding of these processes and allow the development of advanced materials and components for energy storage systems.The gained knowledge will be directly applied on real world energy storage systems, provided by the involved industrial partners.As these approaches are highly interdisciplinary, the new generation of researchers has to be trained to excel in such complex research and industrial environments. The proposed Doctoral Network will enable the PhD candidates to combine the most advanced scientific techniques (regarding analysis, modelling and synthesis) with the requirements of modern industry, in the dynamic field of energy storage systems. They will develop a deep scientific understanding of surface and interface processes and also the systemic knowledge to apply their skills in a broad range of industrial environments. ver más
30/09/2027
Presupuesto desconocido
Duración del proyecto: 47 meses Fecha Inicio: 2023-10-01
Fecha Fin: 2027-09-30

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-10-01
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Líder del proyecto
CEST KOMPETENZZENTRUM FUR ELEKTROCHEMISCHE OB... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5