SUPER will develop functional, self-assembled multi-quantum wells based on metal halide perovskites (MHPs) and organic semiconductors integrated at the molecular level in ordered extended solids, creating a hybrid material platfor...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
LED4Nature
High Performance Environmentally Benign Quantum Dot@Perovski...
173K€
Cerrado
SELENe
Strain Engineering of Light Emitting Nanodomes
171K€
Cerrado
NEHA
Nanoscale Epitaxial Heterostructures Involving Metal Halides
2M€
Cerrado
PINNACLE
Perovskite Nanocrystal Nanoreactors for Enhanced Light Emiss...
1M€
Cerrado
NANOPTO
Novel processing of colloidal nanocrystals for optoelectroni...
170K€
Cerrado
MAMA
Unlocking research potential for multifunctional advanced ma...
3M€
Cerrado
Información proyecto SUPER
Duración del proyecto: 59 meses
Fecha Inicio: 2023-06-01
Fecha Fin: 2028-05-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
SUPER will develop functional, self-assembled multi-quantum wells based on metal halide perovskites (MHPs) and organic semiconductors integrated at the molecular level in ordered extended solids, creating a hybrid material platform fully exploiting synergistic interactions between the organic and inorganic sublattices with an unprecedented level of sophistication. The resulting materials will have radically enhanced charge transport, improved luminescence yield and extended tunability compared to currently available MHPs, while providing new solutions to the main challenges of toxicity and stability faced by the entire field of MHPs. SUPER will undertake an original supramolecular approach creating a new fundamental understanding of how large molecular and atomic systems interact to form functional superstructures, merging concepts from organic and inorganic synthesis, solid-state chemistry, photophysics, organic electronics and device engineering. The bottom-up construction will start from the synthesis of innovative semiconductor molecular rods with widely tunable energetics allowing fine tuning of the internal energy level alignment, while encoding the structural characteristics regulating intermolecular associations and the controlled supramolecular assembly of the hybrid material. Solid-state nuclear magnetic resonance will be applied as top-notch technique to probe the low-dimensional phases, their defectivity, structural rigidity and local coordination environment with atomic-scale resolution. Advanced optical spectroscopy and charge transport measurements will assess the efficacy of the synthetic strategies establishing a close structure-properties relationship and assisting the material?s refinement. Light-emitting diodes and field-effect transistors will be used as final platforms to assess the concerted effect of supramolecular architecture, transport and luminescent properties ensuring the high-technological relevance of the newly-developed materials.