Supramolecular Chemistry in Medicine Towards Complex Molecular Biomaterials that...
Supramolecular Chemistry in Medicine Towards Complex Molecular Biomaterials that are Indistinguishable from Nature
This ERC proposal aims to bridge the gap between supramolecular chemistry and regenerative medicine by defining a new area of ‘supramolecular medicine’ in which supramolecular chemistry will be used to solve medical and health pro...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This ERC proposal aims to bridge the gap between supramolecular chemistry and regenerative medicine by defining a new area of ‘supramolecular medicine’ in which supramolecular chemistry will be used to solve medical and health problems. Understanding of tissues, cells, and the interactions occurring at the molecular level in natural systems is prerequisite to intervene in and stimulate processes in the body, in order to perform regenerative medicine. Because all processes taking place in our body are based on supramolecular interactions between molecules that are dynamic in nature and have certain on-off rates, we anticipate that biomaterials brought into the body should display this same dynamic behaviour, and should be able to adapt to the tissue they encounter. Therefore, in the field of regenerative medicine there is a need for new biomaterials that are supramolecular in nature and are indistinguishable from their natural counterparts.
Here we describe the design of supramolecular biomaterials that can be applied as synthetic extracellular matrices and synthetic cell-like microcapsules. By designing these synthetic systems as indistinguishably from nature we propose to get more insight in the processes occurring in nature. At a fundamental molecular level several molecules will be brought together to form bioactive complex molecular assemblies. Control over the introduction of bioactivity is necessary for selective interactions with specific cells and (parts of) tissues. These design principles will be applied to make different biomaterials that can be brought to the patient as synthetic extracellular matrix gel-like materials for stem cell incorporation, free-standing membranes for the development of bioartificial kidneys, and microcapsules specifically binding to the deteriorating peritoneal membranes of kidney patients on peritoneal dialysis.