Supramolecular Architectures for Ruthenium Water Oxidation Catalysis
Ruthenium complexes with 2,2'-bipyridine-6,6'-dicarboxylate (bda) as equatorial ligand and pyridines as axial ligands are currently the most favored class of efficient water oxidation catalysts (WOCs) and thus a great hope for ach...
Ruthenium complexes with 2,2'-bipyridine-6,6'-dicarboxylate (bda) as equatorial ligand and pyridines as axial ligands are currently the most favored class of efficient water oxidation catalysts (WOCs) and thus a great hope for achieving practical artificial photosynthesis. Based on the outstanding WOC performance of our recently reported macrocycles bearing three [Ru(bda)] units, this proposal aims to explore a wider variety of multinuclear metallosupramolecular architectures including more diverse polygons, polyhedra and coordination polymers. Precise control of structure and size will be achieved through a directional bonding approach with suitable vertices and edges, e.g. for cubic, tetrahedral, or dodecahedral architectures, and new ring-opening living supramolecular polymerization protocols with specially-tailored [Ru(bda)] precursors and multitopic azaaromatic initiators towards unprecedented polymer topologies.
Whereas the synthesis and isolation of these metallosupramolecular structures will take advantage of rapid axial ligand exchange at elevated temperatures and the charge neutrality in the Ru(II) oxidation state, water networks will form in the internal cavities of the polygons, polyhedra and coordination networks for the catalytically active Ru(IV/V) species. These networks facilitate substrate water binding and proton-coupled electron transfer processes, both of which accelerate the challenging oxidative half reaction of (photo-)catalytic water splitting. Taking advantage of the accumulation of positive charge in the envisioned metallosupramolecular scaffolds, negatively charged photosensitizers will be embedded into host-guest complexes to accelerate solar light-driven WOC. Accordingly, this proposal will establish a new family of metallosupramolecular structures with outstanding functionality based on innovative synthetic concepts and important principles found in natural photosynthesis.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.