The goal of SOLID is the systematic mapping of genetic suppression for important organelles with impaired fidelity in human disease to uncover new strategies to correct the perturbed state. Functioning of the eukaryotic cell relie...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto SOLID
Duración del proyecto: 77 meses
Fecha Inicio: 2018-11-05
Fecha Fin: 2025-04-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The goal of SOLID is the systematic mapping of genetic suppression for important organelles with impaired fidelity in human disease to uncover new strategies to correct the perturbed state. Functioning of the eukaryotic cell relies on the concerted activity of biological machines, defects in which can cause incurable human disease, including metabolic disorders and neurodegeneration. This is exemplified by malfunctioning mitochondria or lysosomes, for which (alongside environmental triggers) hundreds of causative genes have been identified, but cures are mostly lacking. This is mainly due to the difficulty of drugging loss-of-function mutations, which uniquely alter or entirely remove the gene product. Extensive studies in yeast and initial work in the human system show that cellular modules contain a substantial amount of hidden genetic suppression. Revealing suppressors of disease-defining features of organelle perturbation and targeting those instead of the query mutations, will address the frustrations of drugging an absent factor and etiological diversity. Until now, mutation-based genome-wide suppressor surveys were mostly limited to model organisms and phenotypes yielding growth defects, due to technical hurdles associated with recessive genetics in the human system. However, with the development of a groundbreaking new forward genetics platform that combines genome engineering, ultradeep haploid mutagenesis and direct stratification of fixed mutants, we can now, for the first time, interrogate genetic suppression of human organelle defects independent of cellular fitness. SOLID will also develop new technology to study organelle fidelity in an exhaustive fashion that departs from a gene-centric view point and captures complex phenotypes. Altogether, this will create a new paradigm of 'studying cell biology via genetics' widely applicable to many different biological questions, and reveal urgently needed novel therapeutic possibilities for incurable diseases.