Supported Porous Nanoparticles for Functional Plasmonic Materials
"Localized surface plasmon resonance (LSPR) occurring in metal nanoparticles has opened the door to the realization of fascinating novel concepts and technologies. This is possible due to the unique properties of the light-metal n...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DarkSERS
Harvesting dark plasmons for surface enhanced Raman scatteri...
2M€
Cerrado
HotElecTEM
In-Depth Dynamical Structural and Optical Study of Unconvent...
181K€
Cerrado
SINGLESENS
Single metal nanoparticles as molecular sensors
2M€
Cerrado
Topological-Plasmonics
Robust light manipulation in plasmonic nanostructures assist...
183K€
Cerrado
OSCAR
Operando study of the catalytic activity of gold nanoparticl...
173K€
Cerrado
MAT2011-28385
NANOENSAMBLAJE DE PARTICULAS BICOMPONENTE METAL-MICROGEL PAR...
75K€
Cerrado
Información proyecto PlasmoPore
Duración del proyecto: 24 meses
Fecha Inicio: 2021-03-25
Fecha Fin: 2023-03-31
Líder del proyecto
STICHTING VU
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
188K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"Localized surface plasmon resonance (LSPR) occurring in metal nanoparticles has opened the door to the realization of fascinating novel concepts and technologies. This is possible due to the unique properties of the light-metal nanoparticles interaction mediated by LSPR, for example the efficient light absorption and scattering by metal nanoparticles at resonance, as well as enhanced electromagnetic fields in the vicinity of the nanoparticles. A particularly interesting, yet rarely explored nanoparticle feature with great potential for the creation of plasmonic nanostructures with novel functionalities is porosity, which exhibits numerous so-called ""hotspots"": regions where the local electromagnetic field is greatly enhanced with respect to the incoming field. Combined with large surface-to-volume ratios, porous metal nanoparticles offer potentials for e.g. sensing and plasmon-mediated catalysis applications. Despite these prospects, porous nanoparticles have so far been rarely exploited due to the fact that they are produced via colloidal synthesis, which introduces several limitations.
The objective of the proposed research is to establish a nanofabrication route, by combining nanolithography and wet chemical route, to produce supported array of porous plasmonic nanoparticles with excellent dimension control and utilize these nanostructures in the fields of plasmon-mediated catalysis and plasmonic hydrogen sensing. The action will combine the researcher expertise in nanofabrication, experimental plasmonics and hydrogen sensing and the supervisor and host institute experiences in wet chemistry, single-particle spectroscopy and plasmon-mediated catalysis. The successful results of this action will contribute to the development of new class of materials, that is supported porous nanoparticles, which extends the library of the functional plasmonic materials with wide applications for example in sensing and plasmon-activated catalysis."