Supply Chain Demand Forecasting based on Unobserved Components models
The Supply Chain Management depends importantly on the predictions accuracy in the most of industries. These predictions are provided by the Forecasting Support System (FSS) in order to make decisions regarding departments like Ma...
The Supply Chain Management depends importantly on the predictions accuracy in the most of industries. These predictions are provided by the Forecasting Support System (FSS) in order to make decisions regarding departments like Marketing, Finance, Inventory, Distribution, Logistic, Human Resources and purchasing. In fact, these predictions are usually based on the mixture of forecasting statistical techniques, current economic situation, experience of the managers and the way that the FSS gathers these concepts. Nonetheless, there are current evidences that suggest a non efficient use of these systems and so, high costs are associated to these prediction errors. The present project will accomplish a thoroughly investigation about the possible sources of this inefficient use of the FSS by means of a collaboration with the Lancaster University Management School (LUMS). Thus, the different ingredients which act on the FSS will be analyzed in order to suit the main objectives of the organization in the best way. Firstly, we will analyze the different statistical methods which are candidates to do the forecasting task. We will focus on the Unobserved Components models developed in a State-Space framework, where novel hybrid techniques which use discrete and continuous time domains will be assessed in combination with efficient recursive estimation techniques like Kalman Filter and Fixed Interval Smoothing. Secondly, a study about the influence of the current economic situation on our forecasts will be accomplished. This investigation will be carried out from a new point of view about the business cycle, where adaptive nonlinear techniques which come from the control literature will be used to allow us look into the time-varying behaviour of the business cycle frequency. Finally, all the aforementioned points will be gathered with the manager’s judgement in an ideal Forecasting Support System.ver más
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
04-11-2024:
PERTE-AGRO2
Se ha cerrado la línea de ayuda pública: PERTE del sector agroalimentario
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.