In recent years, worldwide efforts to tackle climate change have resulted in immense momentum towards renewable energy research. Despite renewables (i.e. photovoltaic) achieving cost parity vs. fossil fuels (32-44$/MWh vs. 44-152$...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2021-126887NA-I00
COOPERACION MOLECULAR ELECTROCATALITICA PARA LA PRODUCCION D...
115K€
Cerrado
CO2RR
Sustainable liquid fuels from CO2 electroreduction
176K€
Cerrado
PID2019-108136RB-C33
PROCESO SOLAR FOTOELECTROCTROQUIMICO PARA LA LA CO-VALORIZAC...
Cerrado
ELCOREL
Electrochemical Conversion of Renewable Electricity into Fue...
4M€
Cerrado
TED2021-132087A-I00
REDUCCION DE CO2 A COMBUSTIBLES SINTETICOS MEDIANTE CATALISI...
127K€
Cerrado
ENE2014-57651-R
ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLE...
242K€
Cerrado
Información proyecto SuperElectro
Duración del proyecto: 42 meses
Fecha Inicio: 2022-04-27
Fecha Fin: 2025-10-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In recent years, worldwide efforts to tackle climate change have resulted in immense momentum towards renewable energy research. Despite renewables (i.e. photovoltaic) achieving cost parity vs. fossil fuels (32-44$/MWh vs. 44-152$/MWh), implementation remains limited. One persistent challenge is intermittency (i.e. inconsistent energy supply by seasonal/daily cycles). Amongst promising energy storage methods (i.e. Li-ion batteries, hydrostatic, etc.), electrocatalytically-generated hydrocarbons pose numerous advantages. They are 1) non-polluting, 2) benign aqueous compositions, 3) earth-abundant electrode materials, and 4) carbon-neutrality / carbon-negative via carbon dioxide reduction. However, there is still limited control over the gaseous pathways in gas-involving electrocatalysis. This limitation negatively influences both reactant and product flux, affecting conversion efficiency. From a physical perspective, electrocatalysis is a multi-phase process where (liquid) immersed electrodes (solid) interact with reactants/products (gas). Integration of concepts in wettability is thus beneficial. Surface superaerophilicity refers to its strong affinity (-Super) for air/gases (-Aerophilicity). With superaerophilicity, microscopic gas-layers on surfaces (i.e. plastrons) provide highly efficient reactant/product gas transport pathways.
In this project, I will investigate design principles for Superwettability-enhanced Electrocatalysis (SuperElectro). The primary goal is to decouple wettability and electrocatalytic activity. Achievements in electrocatalytic-enhancements (i.e. current density, conversion efficiency, etc.) will thus be universal. The choice of electrode catalyst becomes independent from wettability as plastrons provide alternative product and reactant pathways. Electrocatalysis is vital towards a sustainable adoption of renewable energy technologies. The success of this work impacts the future of our energy industries and green-friendly societies.