Supersonic Variable Geometry Turbine Expanders for High Efficiency High Tempera...
Supersonic Variable Geometry Turbine Expanders for High Efficiency High Temperature Organic Rankine Cycle Applications
Internal combustion engines (ICEs) generally convert only approximately 40% of the fuel energy into useful power and discharge the remaining energy as waste heat to the atmosphere. Organic Rankine Cycle-based, Waste Heat Recovery...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NOWASTE
Engine Waste Heat Recovery and Re Use
5M€
Cerrado
DYNCON-ORC
Dynamic performance modelling and controller design of a min...
212K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Internal combustion engines (ICEs) generally convert only approximately 40% of the fuel energy into useful power and discharge the remaining energy as waste heat to the atmosphere. Organic Rankine Cycle-based, Waste Heat Recovery (ORC - WHR) systems can be used to convert this untapped heat source and convert it into mechanical/electrical power thus allowing a reduction of fuel consumption and CO2 emissions by as much as or more than 15%. The technology readiness level (TRL) for automotive application is still low mainly because of the ORC system’s lack of performance at part load/off-design conditions and control complexities. The aim of SuperVGE is to develop a novel turbine equipped with a variable geometry turbine expander (VGE) nozzle design suitable for supersonic flow and wide range of operation. In addition, appropriate control schemes will be developed to allow high efficiency and power to be generated throughout its dynamic operating range. The project will be supported throughout by other world-leading academic and industrial partners including training secondments to the Technical University of Delft (TUDelft), the Technical University of Denmark (DTU), collaboration and training with industry (FIAT & Enogia) all of which will equip Dr. Usman with a unique insight to ORC and turbo-generator design and application. The training will broaden the researcher’s skills and his carrier prospects in the field. The findings will be relevant to the transportation and clean energy sectors and will be widely disseminated to industry, academia and the public, thus helping to attain socio-economic and environmental targets in the context of the EU 2020 strategic vision.