Super-resolved stochastic inference: learning the dynamics of soft biological ma...
The dynamics of biological systems, from proteins to cells to organisms, is complex and stochastic. To decipher their physical laws, we need to bridge between experimental observations and theoretical modeling. Thanks to progress...
The dynamics of biological systems, from proteins to cells to organisms, is complex and stochastic. To decipher their physical laws, we need to bridge between experimental observations and theoretical modeling. Thanks to progress in microscopy and tracking, there is today an abundance of experimental trajectories reflecting these dynamical laws. Inferring physical models from noisy and imperfect experimental data, however, is challenging. Because there are no inference methods that are robust and efficient, model reconstruction from experimental trajectories is a bottleneck to data-driven biophysics.
I will bridge this gap by developing practical algorithms that permit robust and universal inference of stochastic dynamical models from experimental trajectories. To this aim, I will build data-efficient tools to learn stochastic differential equations and discover physical models, employing methods from statistical physics and machine learning. The main focus of SuperStoc will be in resolving models with high precision from limited trajectories. To assess the efficiency of the methods I develop, I will design information-theoretical frameworks to quantify how much can be inferred from trajectories that are short, partial and noisy. The convergence of the resulting algorithms will be backed by mathematical proofs and numerical simulations in realistic conditions.
I will apply these new tools to several key open biophysical problems where existing methods are failing: condensate-mediated interactions between genomic loci, cellular mechanosensing in confined environments, pattern formation in embryo development, and visual interaction between fish leading to collective motion.
The resulting algorithms will be implemented into a software designed to be useful for the broad soft biological matter community. By proving that one can do more with the same data and providing tools to do so, SuperStoc will help bridge the inference gap towards data-driven biophysics.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.