SUperconducting-Nitride by area-Selective ALD at Low Temperature
The field of computing saw a breakthrough when quantum supremacy was established, and it was demonstrated that a classical computer will take 10,000 years for a task that a quantum processor based on superconducting qubits took 20...
The field of computing saw a breakthrough when quantum supremacy was established, and it was demonstrated that a classical computer will take 10,000 years for a task that a quantum processor based on superconducting qubits took 200 seconds. The future generation of computing hardware that can deliver high performance parallel computing include (i) High performance superconducting circuits-based computing hardware and (ii) quantum processors based on superconducting qubits. Key components of these technologies, like Superconducting Nanowire for Single-Photon Detectors (SNSPDs), cryogenic interconnects and ground plane electronics, use SUperconducting Nitrides (SUNs) such as NbN, TiN and NbTiN. However, despite the heavy reliance on SUNs, optimal deposition processes to engineer these materials to meet the challenges of the technology are still lacking. The desirable process should be able to engineer the features of conformality, provide continuous, pin-hole free films with controlled thicknesses between 2-5 nm, occur at low temperatures and in some applications provide selectivity to reduce the patterning overhead.
This project addresses this gap in SUN material engineering by generating scientific understanding that is pivotal to enabling the quantum processors in the future. We intend to do so by investigating novel chemistries and sequences of Atomic Layer Deposition (ALD) coupled with surface functionalization in order to enable the fabrication of CMOS industry compatible, area Selective ALD at Low Temperature (SALT) of the widely used SUNs of NbN, TiN and NbTiN. This project will increase the understanding of ALD using reducing agents and inhibitors, advance the science of area selective ALD and enable higher fidelity qubits. Therefore, this research contributes to advancing chemical science and caters to the critical needs of the superconducting digital electronics as well as quantum processor hardware since SUNs are ubiquitous to both technologies.ver más
15-11-2024:
PERTE CHIP IPCEI ME/...
Se ha cerrado la línea de ayuda pública: Ayudas para el impulso de la cadena de valor de la microelectrónica y de los semiconductores (ICV/ME)
15-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1579 concesiones
15-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 3 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.