SUNlight to LIQUID Integrated solar thermochemical synthesis of liquid hydrocar...
SUNlight to LIQUID Integrated solar thermochemical synthesis of liquid hydrocarbon fuels
Liquid hydrocarbon fuels are ideal energy carriers for the transportation sector due to their exceptionally high energy density and most convenient handling, without requiring changes in the existing global infrastructure. Current...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SUNFUELS
SOLAR THERMOCHEMICAL PRODUCTION OF FUELS
2M€
Cerrado
SUN-to-LIQUID II
SUNlight-to-LIQUID - Efficient solar thermochemical synthesi...
Cerrado
SOMMER
Solar-Based Membrane Reactor For Syngas Production
5M€
Cerrado
TCSPower
Thermochemical Energy Storage for Concentrated Solar Power P...
4M€
Cerrado
PLEC2021-007906
Catálisis Solar para un futuro de energía renovable SOL-Futu...
254K€
Cerrado
ENE2017-85087-C3-2-R
MATERIALES, PROCESOS Y COMPONENTES PARA UNA REFINERIA SOLAR
218K€
Cerrado
Información proyecto SUN-to-LIQUID
Duración del proyecto: 48 meses
Fecha Inicio: 2015-12-14
Fecha Fin: 2019-12-31
Líder del proyecto
BAUHAUS LUFTFAHRT EV
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
6M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Liquid hydrocarbon fuels are ideal energy carriers for the transportation sector due to their exceptionally high energy density and most convenient handling, without requiring changes in the existing global infrastructure. Currently, virtually all renewable hydrocarbon fuels originate from biomass. Their feasibility to meet the global fuel demand and their environmental impact are controversial. In contrast, SUN-to-LIQUID has the potential to cover future fuel consumption as it establishes a radically different non-biomass non-fossil path to synthesize renewable liquid hydrocarbon fuels from abundant feedstocks of H2O, CO2 and solar energy. Concentrated solar radiation drives a thermochemical redox cycle, which inherently operates at high temperatures and utilizes the full solar spectrum. Thereby, it provides a thermodynamically favourable path to solar fuel production with high energy conversion efficiency and, consequently, economic competitiveness. Recently, the first-ever production of solar jet fuel has been experimentally demonstrated at laboratory scale using a solar reactor containing a ceria-based reticulated porous structure undergoing the redox cyclic process.
SUN-to-LIQUID aims at advancing this solar fuel technology from the laboratory to the next field phase: expected key innovations include an advanced high-flux ultra-modular solar heliostat field, a 50 kW solar reactor, and optimized redox materials to produce synthesis gas that is subsequently processed to liquid hydrocarbon fuels. The complete integrated fuel production chain will be experimentally validated at a pre-commercial scale and with record high energy conversion efficiency.
The ambition of SUN-to-LIQUID is to advance solar fuels well beyond the state of the art and to guide the further scale-up towards a reliable basis for competitive industrial exploitation. Large-scale solar fuel production is expected to have a major impact on a sustainable future transportation sector.