Innovating Works

SINDAM

Financiado
Sunlight Induced Nonadiabatic Dynamics of Atmospheric Molecules
Our atmosphere appears to be a reservoir of inert gaseous molecules, while in reality, it is also composed of a plethora of highly reactive molecules and radicals. Among these are the volatile organic compounds (VOCs) that contrib... Our atmosphere appears to be a reservoir of inert gaseous molecules, while in reality, it is also composed of a plethora of highly reactive molecules and radicals. Among these are the volatile organic compounds (VOCs) that contribute substantially to both global warming and air pollution. Detailed atmospheric models attempt to describe the incredibly complex network of chemical reactions resulting from VOC oxidation in our troposphere and to predict its composition, paramount for informing societal and political decisions and regulations. A surprising observation, though, is that the role of sunlight in the reactions of VOC intermediates is scarcely understood, even though excited-state dynamics, triggered by sunlight absorption, initiate most of the atmosphere’s chemistry. This lack of information is partly due to the challenge in conducting photochemical experiments on transient VOC species. As a result, VOC-related chemical mechanisms are mostly based on a ground electronic state chemistry, leading to some critical deviations between the predicted and observed composition of the atmosphere. Also, vastly neglecting the rich photochemistry of these VOC species leads to a poorer understanding of their resulting environmental impact. This project, SINDAM, launches the field of in silico atmospheric photochemistry by using recent breakthroughs in theoretical and computational chemistry to establish the importance of photochemical processes of VOCs in the atmosphere, either in isolation or in contact with water molecules. SINDAM will answer the simple yet critical question: how ubiquitous are photophysical and photochemical effects in the atmospheric chemistry of VOCs? Hence, this project will stimulate an exciting new synergistic area at the edge between theoretical and atmospheric chemistry, leading to a real, societal impact by improving the predictive power of atmospheric models in the context of global warming and air quality. ver más
31/12/2024
1M€
Duración del proyecto: 76 meses Fecha Inicio: 2018-08-17
Fecha Fin: 2024-12-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2018-08-17
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2018-STG: ERC Starting Grant
Cerrada hace 7 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
UNIVERSITY OF BRISTOL No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5