Structural Models for Text and other Unstructured Data
Most usable data is unstructured. Examples include text, transaction data, images, and web browsing histories. Although rich and plentiful, most economists do not use unstructured data. The few that do generally quantify it with o...
Most usable data is unstructured. Examples include text, transaction data, images, and web browsing histories. Although rich and plentiful, most economists do not use unstructured data. The few that do generally quantify it with off-the-shelf algorithms that are unrelated to the economic environment in which it is generated, which makes connecting it to economic models difficult. I instead propose to build novel probabilistic models of unstructured data that link it directly to relevant economic parameters. This powerful approach will use the information in unstructured data to test and estimate economic models in a way that is not currently possible with existing methods.
I will focus on three distinct themes. The first studies how information about economic conditions is dispersed among agents, and how they aggregate it through interactions. This process it at the heart of the policymaking process, and the use of text data provides a unique opportunity to structurally model this information in innovative ways.
The second theme jointly models unstructured data and the evolution of an economy hit by multiple, unobserved shocks. This will provide a novel forecasting tool, which is of key interest to policymakers. But it will also use unstructured data to estimate equilibrium models of the macroeconomy, and hence recover economic fundamentals.
The final theme will use transaction payments between firms, and extend probabilistic models of network formation to create new definitions of markets that go well beyond anything in the current literature. This will contribute to measuring market power and the transmission of economic shocks, both questions of fundamental importance.
Beyond these specific themes, my research will also pave the way for the use of probabilistic machine learning that combines novel data with clear economic models. The frameworks I introduce will provide a template for others to follow in the future.ver más
15-11-2024:
PERTE CHIP IPCEI ME/...
Se ha cerrado la línea de ayuda pública: Ayudas para el impulso de la cadena de valor de la microelectrónica y de los semiconductores (ICV/ME)
15-11-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1579 concesiones
15-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 3 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.