Structural and thermophysical properties of quantum fluids adsorbed on nanostru...
Structural and thermophysical properties of quantum fluids adsorbed on nanostructured surfaces
The general aim of this project is the development of advanced computational models that enable affordable yet accurate quantum mechanical calculations of the structure and thermophysical properties of atomic and molecular fluids...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2016-75354-P
MODELIZACIONES AB-INITIO MULTI-ESCALA: FLUIDOS CUANTICOS Y P...
48K€
Cerrado
FIS2013-48286-C2-2-P
REACTIVIDAD, PROPIEDADES ELECTRONICAS Y ESTRUCTURALES DE SIS...
151K€
Cerrado
HIPPOGRIFFE
Hybrid simulations of flow properties using atomistic fluc...
195K€
Cerrado
FIS2015-64222-C2-1-P
PROPIEDADES TERMODINAMICAS, ELECTRONICAS Y DE TRANSPORTE EN...
54K€
Cerrado
FIS2014-59279-P
SIMULACION COMPUTACIONAL DE PROPIEDADES Y PROCESOS FISICO-QU...
85K€
Cerrado
BoostQuantumChem
Boosting the performance of Quantum Chemistry for nanocataly...
174K€
Cerrado
Información proyecto QFluidsNano
Duración del proyecto: 31 meses
Fecha Inicio: 2020-03-18
Fecha Fin: 2022-10-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The general aim of this project is the development of advanced computational models that enable affordable yet accurate quantum mechanical calculations of the structure and thermophysical properties of atomic and molecular fluids adsorbed on nanostructured surfaces.The proposed method is based on the liquid density functional theory (to treat the nuclear quantum dynamics) with the first principle evaluation of the interaction forces employing state-of-the-art electronic structure methods. These models will be subsequently applied to the computational investigation of macroscopic quantum effects on the adsorption isotherms, the isotopic selectivity on adsorption, particle diffusion, etc, of helium and hydrogen fluids adsorbed in nanoporous materials. We will focus on the characterization (via computational screening) of the influence of the structural and electronic properties (e.g., the size and geometry of the pores, the specific surface area, the topology of the electronic states) on the capacities of nanomaterials for hydrogen storage and isotope separation via quantum sieving.
The density functional simulations will provide a realistic representation of the nuclear motion underlying storage and sieving phenomena in the target nanomaterials (e.g., metal- and covalent-organic frameworks), and accurate estimations of strutural and thermodynamics properties of the adsorbed fluid, in situations where the computational cost of the standard numerical schemes becomes prohibitive. The insight provided by these calculations can be used to guide the experimental efforts on the investigation of the target systems, and on their applicability in the design of more efficient nanodevices. Consequently, they may lead to significant savings of energy and of natural resources, associated to the design, synthesis, optimization and testing of nanocomponents.