A fundamental property of optical photons is their extremely weak interactions, which can be ignored for all practical purposes and applications. This phenomena forms the basis for our understanding of light and is at the heart fo...
A fundamental property of optical photons is their extremely weak interactions, which can be ignored for all practical purposes and applications. This phenomena forms the basis for our understanding of light and is at the heart for the rich variety of tools available to manipulate and control optical beams. On the other hand, a controlled and strong interaction between individual photons would be ideal to generate non-classical states of light, prepare correlated quantum states of photons, and harvest quantum mechanics as a new resource for future technology. Rydberg slow light polaritons have recently emerged as a promising candidate towards this goal, and first experiments have demonstrated a strong interaction between individual photons. The aim of this project is to develop and advance the research field of Rydberg slow light polaritons with the ultimate goal to generate strongly interacting quantum many-body states with photons. The theoretical analysis is based on a microscopic description of the Rydberg polaritons in an atomic ensemble, and combines well established tools from condensed matter physics for solving quantum many-body systems, as well as the inclusion of dissipation in this non-equilibrium problem. The goals of the present project addresses questions on the optimal generation of non-classical states of light such as deterministic single photon sources and Schrödinger cat states of photons, as well as assess their potential for application in quantum information and quantum technology. In addition, we will shed light on the role of dissipation in this quantum many-body system, and analyze potential problems and fundamental limitations of Rydberg polaritons, as well as address questions on equilibration and non-equilibrium dynamics. A special focus will be on the generation of quantum many-body states of photons with topological properties, and explore novel applications of photonic states with topological properties.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.