We propose to study turbulence and mixing in stably stratified fluid. Mixing is central to a wide range of questions from the heat uptake in the global ocean, the transport and dilution of pollutants in the atmosphere, the efficie...
We propose to study turbulence and mixing in stably stratified fluid. Mixing is central to a wide range of questions from the heat uptake in the global ocean, the transport and dilution of pollutants in the atmosphere, the efficient cooling of buildings, to the homogenising of products in the food industry. However, the mechanisms that are responsible and their physical and dynamical aspects are largely unknown, and it is not possible to predict mixing rates from a knowledge of the overall flow and density fields.
We have invented a new laboratory experiment that produces a maintained stratified shear flow in parameter ranges directly applicable to the situations described above. The experiment, consisting of a two-layer counterflow in a stratified inclined duct, is easy to use and highly flexible. A rich variety of flows from transitional, to spatial and temporal intermittent flow, to fully turbulent flow are obtained, and can be maintained for long times to explore the life-cycles of the turbulence.
We have also developed a unique capability to make near-instantaneous, highly spatially resolved, measurements of all three components of velocity and the density field over a volume. This capability allows, for the first time in a laboratory experiment, measurements of all the quantities of interest over a three-dimensional region.
In addition we have a computational code with which we will carry out direct numerical simulations (DNS) of the experiments over a limited region of parameter space. We will use data from the experiments as initial conditions for the DNS, and compare the time evolution of the flow in the computations and the experiments. We will then use the experiments to extrapolate the results to the full scale.
This study, using the new experiment and diagnostics and state-of-the-art computations, will provide new insights into the dynamics of stratified turbulence and set the standard for future studies of this problem.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.