Strange nuclear matter from first-principles hadron scattering amplitudes
StrangeScatt will assess the role of strange quarks in nuclear physics by performing first-principles computations of scattering amplitudes to study interactions between hadrons with strange quarks. The presence of strange quarks...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2017-87534-P
DESAFIOS EN FISICA DE MUCHOS CUERPOS: HADRONES, NUCLEOS Y AT...
169K€
Cerrado
FPA2013-47443-C2-2-P
FISICA HADRONICA, INTERACCIONES FUNDAMENTALES Y FISICA NUCLE...
85K€
Cerrado
FIS2014-54672-P
HADRONES, NUCLEOS Y ATOMOS - NUEVOS RETOS PARA PROBLEMAS DE...
166K€
Cerrado
FIS2008-01661
SISTEMAS CUANTICOS EN INTERACCION: HADRONES, NUCLEOS Y ATOMO...
338K€
Cerrado
PID2020-118758GB-I00
HACIA LA COMPRENSION DE LA MATERIA GOBERNADA POR LA INTERACC...
212K€
Cerrado
RYC2018-026072-I
From nuclei to neutron stars with many-body theory
309K€
Cerrado
Información proyecto StrangeScatt
Duración del proyecto: 59 meses
Fecha Inicio: 2024-06-01
Fecha Fin: 2029-05-31
Líder del proyecto
RUHRUNIVERSITAET BOCHUM
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
StrangeScatt will assess the role of strange quarks in nuclear physics by performing first-principles computations of scattering amplitudes to study interactions between hadrons with strange quarks. The presence of strange quarks alters the properties of atomic nuclei and nuclear matter. For instance, the relationship between the mass and radius of neutron stars depends on the dynamics of strange quarks produced in their core. However, quantitative predictions of neutron star masses and radii are complicated by our ignorance of the fundamental interactions of baryons with strange quarks (hyperons). Such predictions are timely given the advent of dedicated neutron star observatories, multi-messenger astronomy, and earth-based experiments involving baryon resonances and nuclear matter. Nuclear interactions are rooted in QCD, the fundamental force which binds quarks inside hadrons and hadrons inside nuclei. The bridge between few-body and many-body dynamics is made systematically with effective theories of the strong nuclear force, which require as input few-hadron scattering amplitudes as well as their quark-mass dependence. This project will compute two- and three-hadron scattering amplitudes between nucleons and hyperons directly from QCD using high-performance computer simulations on a space-time lattice. Lattice QCD computations of scattering amplitudes have improved markedly thanks to algorithms developed by the PI, so that accurate and precise first-principles computations of are finally within reach. The unique ability of lattice computations to vary the up, down, and strange quark masses near their physical values is necessary for fully predictive effective theories. The PI's experience in lattice QCD computations of scattering amplitudes makes him ideally suited for StrangeScatt, which supports ground-based experiments and astrophysical observations by probing the role of strangeness in hadron interactions, nuclei, and nuclear matter.