Strain graded MAGnetoelectric composites based on NanoporoUS materials for infor...
Strain graded MAGnetoelectric composites based on NanoporoUS materials for information and biomedical technologies
Magnetoelectric (ME) composites have the potential to revolutionize current nanotechnologies due to their ability to simultaneously respond to external magnetic and electric stimuli. However, archetypical ME materials prepared on...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NANOMOTION
NANOELECTROMECHANICAL MOTION IN FUNCTIONAL MATERIALS
3M€
Cerrado
MAT2009-14741-C02-01
NANOPARTICULAS Y COMPOSITES MAGNETICOS CON APLICACIONES TECN...
263K€
Cerrado
MAT2009-14741-C02-02
SINTESIS ELECTROQUIMICA DE NANOPARTICULAS Y COMPOSITES CON A...
106K€
Cerrado
MAT2015-73775-JIN
MODOS AVANZADOS EN MICROSCOPIA DE FUERZAS MAGNETICAS:APLICAC...
201K€
Cerrado
MAT2010-19442
MATERIALES NANOESTRUCTURADOS DE INTERES TECNOLOGICO Y BIOMED...
303K€
Cerrado
MAT2011-23709
INVESTIGACION SOBRE NUEVOS MATERIALES TIPO OXIDO, MULTIFERRO...
150K€
Cerrado
Información proyecto MAGNUS
Duración del proyecto: 32 meses
Fecha Inicio: 2020-04-20
Fecha Fin: 2022-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Magnetoelectric (ME) composites have the potential to revolutionize current nanotechnologies due to their ability to simultaneously respond to external magnetic and electric stimuli. However, archetypical ME materials prepared on rigid supports show either small effects due to the clamping with the substrate (e.g., Si wafers) or require of extremely high voltages (in case ferroelectric –FE– substrates are employed). To overcome these drawbacks, MAGNUS proposes a comprehensive research program built on the disruptive idea of using strain-gradient (i.e., flexoelectricity), instead of homogeneous strain, to boost the properties of ME composites deposited onto rigid substrates. The project encompasses new strategies to grow ‘mechanically flexible’ nanoporous magnetostrictive materials (FeGa, FeCo, Co ferrite) and fill them with FE polymers (P(VDF-TrFE)), rendering new functionally graded composites, operated with magnetic/electric fields, that will surpass classical compositionally-graded materials. The project aims at using these composites for (i) ME (wireless) bone tissue engineering and (ii) functionally-graded magnetic recording media. MAGNUS will take advantage of (i) my previous experience on electrodeposited Fe-based alloys and spin-coated FE polymers, (ii) the strong background of the main Host Institution (UAB) on magnetism and (iii) the expertise of the Partner Organizations on ME materials for biomedicine (ETH Zürich) and the growth of porous oxides (Univ. Cambridge). MAGNUS will bring interesting cross-cutting outcomes in the field of magnetoelectricity, exploiting strain-gradient mediated ME effects to an unprecedented extent and settling the grounds to consolidate the use of these frontier materials in the newly launched Horizon Europe Framework Programme (2021-2027). Besides the fascinating science to be unveiled in MAGNUS, the project will offer me the possibility to create a prestigious network which will reinforce my professional status in science.