Strain engineering to design functional 4D polymorphism in nanostructured mater...
Strain engineering to design functional 4D polymorphism in nanostructured materials
It is often easy to observe the ability of polymorphic materials to undergo a phase transition through changes in colour, conductivity, photovoltaic efficiency, or other functional properties. In contrast, it is challenging to con...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BES-2011-047699
ESTRUCTURAS MESOMORFICAS: NANOESTRUCTURACION Y RELEVANCIA EN...
43K€
Cerrado
Life-Cycle
Life like Supramolecular Materials based on Reaction Cycles...
2M€
Cerrado
MAT2016-75883-C2-1-P
MATERIALES METAL-ORGANICOS BIOINSPIRADOS E INTELIGENTES CON...
97K€
Cerrado
MAT2016-75883-C2-2-P
MATERIALES METAL-ORGANICOS BIOINSPIRADOS E INTELIGENTES CON...
97K€
Cerrado
PID2021-122980OB-C51
ESTUDIOS DE FENOMENOS ATOMISTICOS EN MATERIALES MULTIFUNCION...
327K€
Cerrado
Información proyecto STRAINSWITCH
Duración del proyecto: 59 meses
Fecha Inicio: 2024-01-01
Fecha Fin: 2028-12-31
Líder del proyecto
UNIVERSITEIT GENT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
It is often easy to observe the ability of polymorphic materials to undergo a phase transition through changes in colour, conductivity, photovoltaic efficiency, or other functional properties. In contrast, it is challenging to control under which external stimuli–stress, temperature, adsorption–these materials switch. Yet, enabling such polymorphic material design would be a game changer for pressing societal challenges, from access to drinkable water to producing green energy. This requires a firm understanding of how changing a material’s structure impacts its polymorphism and macroscopic function.In STRAINSWITCH, I aim to transform polymorphic material design by establishing the strain engineering concept. The central characteristic in my in silico approach is strain: the extent to which a material deforms due to external or internal triggers. On the one hand, external stimuli generate strain, even before they activate a phase transition. On the other, spatial disorder in a structure, tuneable from the atom to the device scale, also induces strain that interferes with external strain fields. My key hypothesis is that it is possible to systematically predict which disorder is needed to ensure polymorphism only occurs under well-defined external triggers by balancing these internal and external strain fields.To confirm this hypothesis, I will develop new in silico methods with the goal to: i. understand how disorder induces strain fields in a material that propagate through both space (3D) and time (+1D) to enable 4D design;ii. predict which internal strain fields activate a material’s polymorphism under specific external stimuli.In STRAINSWITCH, I will combine both goals to establish fundamental disorder-strain-function relationships that can be validated experimentally for metal-organic frameworks and metal halide perovskites. They will pave the way for 4D polymorphic material design with application in water harvesting, photovoltaic devices, and more.