Stochastic Population Biology in a Fluctuating Environment
The aim of this project is to produce a new synthesis integrating ecological and evolutionary processes. This synthetic approach is based on the fundamental premise that the effects of environmental stochasticity are essential for...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto STOCHPOP
Líder del proyecto
SINTEF AS
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The aim of this project is to produce a new synthesis integrating ecological and evolutionary processes. This synthetic approach is based on the fundamental premise that the effects of environmental stochasticity are essential for the understanding of biological processes at every time scale because all natural populations are exposed to a fluctuating environment. Following my recent advances in the development of stochastic population models I will in this proposal address three questions. First, I will examine to whether the ecological effects of a fluctuating environment can be predicted from some basic set of characters distributing species along a slow-fast continuum of life history variation. Secondly, I will using my own long-term study systems partition selection on fitness-related traits into different hierarchical components, which all must be estimated for predicting the rate of evolutionary changes in quantitative characters. Thirdly, I will examine to what extent using a comparative approach how the strength of fluctuating selection caused by environmental change is predictable from basic life history characteristics. I expect that any emerging patterns arising from the evaluation of these hypotheses will represent a major break-through in evolutionary biology because it will enable identification of general principles and processes that affect the rate of change of populations both at ecological and evolutionary time scales and hence provide tools for development of quantitative predictions for the expected rate of Darwinian evolution in fluctuating environments. I further anticipate that the knowledge advanced will have significant implications for research in population biology and its future application in applied conservation biology.