Innovating Works

SPICES

Financiado
Statistics-driven Planet Imaging in Circumstellar Environments
The SPICES project applies and develops state-of-the-art statistical methods to image forming exoplanets and characterize planet-forming disks. More than 5000 exoplanets have been detected as of today, showing a great diversity in... The SPICES project applies and develops state-of-the-art statistical methods to image forming exoplanets and characterize planet-forming disks. More than 5000 exoplanets have been detected as of today, showing a great diversity in planetary system architectures that is still not entirely understood. Many of these planets were found in systems that have dissipated their birth environment, and do not allow for the study of the early times of planet formation. Originally formed in gaseous protoplanetary disks surrounding newborn stars, long-period giant planets such as Jupiter shape the evolution of planetary systems including that in our own Solar System. They can gravitationally interact with disks and imprint signatures such as gaps, rings, and spiral arms. Such features are routinely observed in high resolution disk observations, suggesting that a large population of massive planets are actively sculpting protoplanetary disks. Later on, these gas-rich disks dissipate within a few Myr while terrestrial planets form, and planetesimal collisions lead to second- generation dust populations (i.e., debris disks). Observation of planetary systems in different stages is therefore key to understanding their formation and evolution. Using modern statistics-based methods, I propose the Statistics-driven Planet Imaging in Circumstellar EnvironmentS (SPICES) project to perform unprecedented inspection of planet forming disks, thus detecting planets that are embedded in disks while characterizing disk mineralogy. By doing so, I will bridge the gap between revolutionary data analysis methods in analyzing and the myriad of high-quality data, and ultimately provide new insights into the formation and evolution of planetary systems. ver más
31/05/2025
OCA
196K€
Duración del proyecto: 25 meses Fecha Inicio: 2023-04-27
Fecha Fin: 2025-05-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-04-27
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 196K€
Líder del proyecto
OBSERVATOIRE DE LA COTE DAZUR OCA No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5