Statistical Learning for Earth Observation Data Analysis.
SEDAL is an interdisciplinary project that aims to develop novel statistical learning methods to analyze Earth Observation (EO) satellite data. In the last decade, machine learning models have helped to monitor land, oceans, and a...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TIN2015-64210-R
AVANCES EN APRENDIZAJE ESTADISTICO PARA EL ANALISIS DE DATOS...
49K€
Cerrado
TEC2016-77741-R
APRENDIZAJE ESTADISTICO PARA LA DETECCION DE NUBES EN IMAGEN...
185K€
Cerrado
IJCI-2017-33112
Aprendizaje estadístico en geociencia y teledetección: estim...
64K€
Cerrado
CALCHAS
Computational Intelligence for Multi Source Remote Sensing D...
215K€
Cerrado
Goldeneye
Earth observation and Earth GNSS data acquisition and proces...
11M€
Cerrado
PID2019-109026RB-I00
HERRAMIENTAS DE APRENDIZAJE PROFUNDO PARA LA DETECCION DE NU...
150K€
Cerrado
Información proyecto SEDAL
Duración del proyecto: 60 meses
Fecha Inicio: 2015-08-11
Fecha Fin: 2020-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
SEDAL is an interdisciplinary project that aims to develop novel statistical learning methods to analyze Earth Observation (EO) satellite data. In the last decade, machine learning models have helped to monitor land, oceans, and atmosphere through the analysis and estimation of climate and biophysical parameters. Current approaches, however, cannot deal efficiently with the particular characteristics of remote sensing data. In the coming few years, this problem will largely increase: several satellite missions, such as the operational EU Copernicus Sentinels, will be launched, and we will face the urgent need to process and understand huge amounts of complex, heterogeneous, multisource, and structured data to monitor the rapid changes already occurring in our Planet.
SEDAL aims to develop the next generation of statistical inference methods for EO data analysis. We will develop advanced regression methods to improve efficiency, prediction accuracy and uncertainties, encode physical knowledge about the problem, and attain self-explanatory models learned from empirical data. Even more importantly, we will learn graphical causal models to explain the potentially complex interactions between key observed variables, and discover hidden essential drivers and confounding factors. This project will thus aboard the fundamental problem of moving from correlation to dependence and then to causation through EO data analysis. The theoretical developments will be guided by the challenging problems of estimating biophysical parameters and learning causal relations at both local and global planetary scales.
The long-term vision of SEDAL is tied to open new frontiers and foster research towards algorithms capable of discovering knowledge from EO data, a stepping stone before the more ambitious far-end goal of machine reasoning of anthropogenic climate change.