Stable Brain Machine control via a learnable standalone interface
Non-invasive Brain Machine Interfaces (BMI) bring great promise for neuro-rehabilitation and neuro-prosthesis, as well as for brain control of everyday devices and performance of simple tasks. Over the last 15 years the interest i...
Non-invasive Brain Machine Interfaces (BMI) bring great promise for neuro-rehabilitation and neuro-prosthesis, as well as for brain control of everyday devices and performance of simple tasks. Over the last 15 years the interest in BMIs has grown substantially, and a variety of interfaces have been developed. The field has been growing dramatically, and market studies reveal an estimated market size of $1.46 billion by 2020. However, non-invasive BMIs have failed to reach the impressive control seen by BMIs implanted in the brain. To date, they require considerable training to reach a moderate level of control, they are susceptible to noise and interference, do not generalize between people and devices, and performance does not show long-term consolidation. Results from our ERC-funded work uncovered a new paradigm that dramatically improves these issues. We propose to develop a prototype for a novel, standalone, non-invasive, noise-resistant BMI, based on an unexplored BMI learning paradigm. In this POC we will 1) refine the brain signal interface (decoder) to be automatically customizable to each individual and produces faster training, 2) implement our BMI technology into a portable hardware-based system, and 3) develop a virtual reality/gaming training platform that will increase learning, performance and consolidation of BMI control. In addition to these technical aims, we propose to explore commercial opportunities and societal benefits, in particular in the health sector. We will conduct market analysis and develop a business case for this product, while expanding industry contacts for production and commercialization.
The work proposed in this PoC grant will permit, for the first time to our knowledge, the development of a portable, stand-alone, noise-resistant, and easy to learn BMI, applicable across a wide set of devices, which will bring a significant social impact in health, entertainment and other applications.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.