Innovating Works

SEAL-HYDROGEN

Financiado
Stable and Efficient Alkaline Water Electrolyzers With Zero Critical Raw Materials for Pure Hydrogen Production The EU Hydrogen Strategy sets the goal of installing at least 40 GW of renewable H2 electrolysers by 2030, which imposes significant challenges for water-electrolysis technology. Although current zero-gap alkaline water electrolys... The EU Hydrogen Strategy sets the goal of installing at least 40 GW of renewable H2 electrolysers by 2030, which imposes significant challenges for water-electrolysis technology. Although current zero-gap alkaline water electrolysis (AWE) has potential for cost-effectiveness and scalability, it needs further optimization in activity, stability, and gas crossover to increase efficiency and system lifetime. This project will develop a new class of AWE combining proven benefits of classic systems with cutting-edge innovations in materials science, catalyst design, and process engineering. Driven by an industrial-feasibility vision, a system that is both technically advanced and economically viable for large-scale commercial deployment is pursued. The proposed innovations include highly efficient and earth-abundant two-dimensional layered double hydroxides (LDH) obtained through a starightforward synthetic route, offering a sustainable and cost-effective alternative to noble metal-based catalysts. An innovative technology for up-scaling the production of LDH layers by direct growth of catalysts in porous transport electrodes will be implemented and explored on commercial separators. The interplay between the substrate, catalyst, and separator will be thoroughly optimized through the development of triple-phase boundary electrodes (catalyst-support-ionomer) structures with improved thermo-mechanical stability. A reliable method based on Raman spectroscopy, will be developed for the precise determination of electrode stability, offering an appropriate quality control of great interest both in research and industry. The optimal design will be assembled and tested, first in single cells of 5 cm², then in 25 cm², and finally scaled to a 6-cell stack of 300 cm², to demonstrate a next generation technology with improved performance, stability and durability, aimed to accelerate the commercial uptake of water electrolysis and turn green H2 into an economically viable solution. ver más
Duración del proyecto: 36 meses Fecha Inicio: 2023-12-11
Fecha Fin: 2026-12-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-12-11
HORIZON EUROPE No se conoce la línea exacta de financiación, pero conocemos el organismo encargado de la revisión del proyecto.
Presupuesto El presupuesto total del proyecto asciende a 3M€
Líder del proyecto
UNIVERSITAT DE VALÈNCIA (ESTUDI GENERAL) No se ha especificado una descripción o un objeto social para esta compañía.