Stability Conditions Moduli Spaces and Enhancements
I will introduce new techniques to address two big open questions in the theory of derived/triangulated categories and their many applications in algebraic geometry.
The first one concerns the theory of Bridgeland stability condi...
I will introduce new techniques to address two big open questions in the theory of derived/triangulated categories and their many applications in algebraic geometry.
The first one concerns the theory of Bridgeland stability conditions, which provides a notion of stability for complexes in the derived category. The problem of showing that the space parametrizing stability conditions is non-empty is one of the most difficult and challenging ones. Once we know that such stability conditions exist, it remains to prove that the corresponding moduli spaces of stable objects have an interesting geometry (e.g. they are projective varieties). This is a deep and intricate problem.
On the more foundational side, the most successful approach to avoid the many problematic aspects of the theory of triangulated categories consisted in considering higher categorical enhancements of triangulated categories. On the one side, a big open question concerns the uniqueness and canonicity of these enhancements. On the other side, this approach does not give a solution to the problem of describing all exact functors, leaving this as a completely open question. We need a completely new and comprehensive approach to these fundamental questions.
I intend to address these two sets of problems in the following innovative long-term projects:
1. Develop a theory of stability conditions for semiorthogonal decompositions and its applications to moduli problems. The main applications concern cubic fourfolds, Calabi-Yau threefolds and Calabi-Yau categories.
2. Apply these new results to the study of moduli spaces of rational normal curves on cubic fourfolds and their deep relations to hyperkaehler geometry.
3. Investigate the uniqueness of dg enhancements for the category of perfect complexes and, most prominently, of admissible subcategories of derived categories.
4. Develop a new theory for an effective description of exact functors in order to prove some related conjectures.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.