Stability and transition in extracorporeal blood flow devices: understanding flo...
Stability and transition in extracorporeal blood flow devices: understanding flow-induced hemolysis and thrombogenesis
The blood flow in extracorporeal medical devices is exposed to non-physiological conditions, which may lead to red blood cell damage and clot formation. Several therapies are applied to patients to prevent these phenomena, but the...
ver más
Descripción del proyecto
The blood flow in extracorporeal medical devices is exposed to non-physiological conditions, which may lead to red blood cell damage and clot formation. Several therapies are applied to patients to prevent these phenomena, but they all come with side effects. Understanding the causes of flow-induced hemolysis and thrombogenesis would reduce the need for medical therapies, thus enhancing the well-being of the patients. An extracorporeal membrane oxygenation (ECMO) circuit is made up of several components: a blood pump, a membrane oxygenator, cannulae, tubes and connectors. The blood flow through these components is either turbulent or transitional, thus the blood is subject to hydrodynamic stresses that may lead to hemolysis or platelet activation. The link of these two undesired phenomena with the flow regimes and the transition mechanism has not been investigated in previous studies, and it is the aim of the current project. We will perform high-fidelity, three-dimensional numerical simulations of the flow in the connectors and the curved flexible tubes of an ECMO circuit. A non-Newtonian rheological model will be assumed for the blood viscosity. Transition to turbulence will be studied employing both modal and non-modal three-dimensional global stability analysis. For this purpose, a time-stepping technique will be implemented in the numerical code developed by the host's group, combined with a method for solving large-scale eigenvalue problems. Finally, an adjoint sensitivity analysis of the hemolysis index and the platelet activation state to boundary conditions and modifications in the flow will be performed. These results will provide insightful information for the design of medical devices with increased hemodynamic performance.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.