Innovating Works

IQARO

Financiado
SpIn-orbitronic QuAntum bits in Reconfigurable 2D-Oxides
"The quest for the realization of ""fault tolerant"" quantum computation is currently challenged by the extreme fragility of quantum effects with respect to noise and decoherence. Quantum control, quantum initialization, read-out... "The quest for the realization of ""fault tolerant"" quantum computation is currently challenged by the extreme fragility of quantum effects with respect to noise and decoherence. Quantum control, quantum initialization, read-out and enhanced coherence remain the main challenges which need to be addressed in a scalable multi-qubit platform. In the last few years there were tremendous advancements in the field of spin-orbitronics where the spin-degrees of freedom are manipulated with electric fields through the spin-momentum locking of the electrons. In spite of its importance, this property of materials characterized by large and tunable spin-orbit coupling (SOC), such as two-dimentional (2D) oxide materials, is not fully exploited in quantum computation. Here, we propose spin-orbitronics qubits and their experimental realization in single and double quantum dots based on 2D electron gases (2DEGs) formed at SrTiO3-based oxide interfaces. Due to their large spin-orbit splitting and gate-tunability, oxide interfaces are characterized by an exceptional degree of spin-momentum locking, and at the same time by a unique combination of high-mobility and 2D-magnetism. The exploitation of largely tunable SOC and spin-polarization in 2D systems, in combination with tunabilty of the host materials, is very attractive for a novel quantum computation platform as it allows a coherent quantum control of individual electron spins using spin to charge interconvertion. The proposed platform has all the characteristics for the practical implementation of an innovative quantum computation approach which allows upscaling to a large qubit numbers and goes beyond the one-dimensional interconnect schemes with important fundamental and technological advantages based on spin-orbitronics." ver más
30/09/2027
CNR
4M€
Duración del proyecto: 47 meses Fecha Inicio: 2023-10-01
Fecha Fin: 2027-09-30

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-10-01
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 4M€
Líder del proyecto
CONSIGLIO NAZIONALE DELLE RICERCHE No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5