Spinor Bose Gases in 1D Equilibrium properties Dynamics and Spin orbit coupli...
Spinor Bose Gases in 1D Equilibrium properties Dynamics and Spin orbit coupling
The properties of materials are determined by the order in their most fundamental constituents, generally appearing at sufficiently low temperatures after a phase transition. This generic picture encompasses phenomena as diverse a...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
Interpol
Interactions between polarons in polarized Fermi gases
194K€
Cerrado
PID2020-120614GB-I00
PROPIEDADES ESPECTRALES Y DE TRANSPORTE DE MATERIALES CUANTI...
105K€
Cerrado
MFIQPT
Thermodynamic investigation of magnetic field induced quantu...
194K€
Cerrado
PGC2018-098613-B-C21
SPIN-ORBIT DRIVEN PHYSICS AT SURFACES AND INTERFACES OF QUAN...
145K€
Cerrado
COMPETE
Competition Induced Novel Quantum States
194K€
Cerrado
Información proyecto Spin1D
Duración del proyecto: 24 meses
Fecha Inicio: 2016-03-29
Fecha Fin: 2018-03-31
Líder del proyecto
COLLEGE DE FRANCE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
185K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The properties of materials are determined by the order in their most fundamental constituents, generally appearing at sufficiently low temperatures after a phase transition. This generic picture encompasses phenomena as diverse as: the ordering of atoms into perfectly periodic crystals, into superfluid phases for liquid Helium or dilute atomic gases, or even cosmological phenomena. In the case of magnetic materials, usually described in terms of localized spins on lattice, ordering refers to the spatial organization of spins. Examples of such organization are the ferromagnetic and anti-ferromagnetic phases in electronic (spin-1/2) systems: the former is characterized by the parallel alignment of adjacent electron spins in a lattice, while the latter exhibits an antiparallel arrangement of the spins. Spin-exchange interactions are responsible for the emergence of such magnetic quantum phases. Magnetic systems are of the utmost importance for fundamental and applied reasons. A general understanding the nature of magnetic quantum phases of matter requires the study of magnetic systems beyond spin-1/2, where more magnetic phases are possible.
Spinor Bose-Einstein condensates (BECs) are highly controllable ultracold atom systems whose internal (spin) degree of freedom allows for different types of magnetic ordering, therefore offering a wider span of magnetic quantum phases. The real time control of the experimental parameters also enables a detailed study of the dynamics of the system out of equilibrium, where topological defects can arise.
Furthermore, under spin-orbit coupling (SOC) spinor BECs can display even richer behavior arising from the interplay between ordering in momentum space due to SOC and in real space due to spin exchange. This project aims at the realization of 1D quantum systems with ultracold Na-23 atoms to investigate magnetic quantum phases (with or without SOC) in and out of equilibrium.