Spin Orbit Torque in 2D van der Waals Heterostructures
This Marie-Curie proposal aims to study the mechanisms governing spin-orbit torque in 2D ferromagnetic materials attached to topological insulators. It also proposes a new method to detect the magnetization dynamics of the 2D ferr...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EIN2020-112223
MATERIALES TOPOLOGICOS 2D PARA VALLEYTRONIC
10K€
Cerrado
ODDSUPER
New mechanisms and materials for odd frequency superconducti...
1M€
Cerrado
FLATLAND
Electron lattice spin correlations and many body phenomena i...
3M€
Cerrado
RTI2018-097895-B-C43
NUEVAS FUNCIONALIDADES DIRIGIDAS POR INTERACCIONES ESPIN-ORB...
133K€
Cerrado
PGC2018-097028-A-I00
INVESTIGANDO LOS ESTADOS DE SUPERFICE TOPOLOGICOS DE MATERIA...
36K€
Cerrado
NovelTopo
Novel topological phases of matter From topological invaria...
195K€
Cerrado
Información proyecto SOT-2DvdW
Duración del proyecto: 27 meses
Fecha Inicio: 2018-04-11
Fecha Fin: 2020-07-17
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This Marie-Curie proposal aims to study the mechanisms governing spin-orbit torque in 2D ferromagnetic materials attached to topological insulators. It also proposes a new method to detect the magnetization dynamics of the 2D ferromagnet by using photoluminescence. This is done by measuring the valley splitting induced by exchange proximity effect on a transition metal dichalcogenide (TMD) semiconductor monolayer deposited, or grown, on top of the 2D ferromagnet. I propose first to study the different heterostructures involved, namely 2D ferromagnet/TMD monolayer and 2D ferromagnet/topological insulator, using density functional theory (DFT) in order to get some insight on the electronic structures at the interface between these materials and the different physical phenomena that may take place at these interfaces. This DFT calculations will also help to detect those pairs 2D ferromagnet/TMD monolayer leading to a higher valley splitting which translates into a stronger optical response and clearer peak splitting in the photoluminescence spectra. Second, I propose to use Hamiltonians based on these DFT calculations and non-equilibrium Green’s function formalism to study the torques induced in the 2D ferromagnet after charge injection into the topological insulator. For this, I plan to implement the calculation of field-like and damping-like torques within a previously developed NEGF code. With this proposal, I expect to provide society and researchers with a new methodology which will help to develop new storage devices using 2D materials and other van der Waals materials, which are at the forefront of next generation nano-devices.