Innovating Works

SPEAR

Financiado
Spin orbit materials emergent phenomena and related technology training
Spin Orbitronics provides a challenging and innovative framework for training early-stage researchers (ESRs) with excellent prospects for a career in industry and academia. In this promising area, the SPEAR project proposes a mult... Spin Orbitronics provides a challenging and innovative framework for training early-stage researchers (ESRs) with excellent prospects for a career in industry and academia. In this promising area, the SPEAR project proposes a multidisciplinary European network, composed of 7 universities, 3 research centres and 7 small and medium sized companies, which will provide state-of-the-art training for ESRs in the field of fundamental and applied Spin Orbitronics. The overarching scientific and technological objective of our research programme is to study materials with strong spin-orbit coupling, novel phenomena in these materials, and to build devices based on these phenomena for the next generation of memories, such as magnetic random-access memory (MRAM), and beyond-CMOS technology, such as spin-orbit-based logic, machine learning or neuromorphic computing. SPEAR will train 15 ESRs through research in the physics of spin-orbit torques, spin-to-charge conversion, 2D magnetic materials, spin Hall nano-oscillators, voltage control of magnetic anisotropy, and skyrmions. The ESRs to be recruited will develop state-of-the-art technologies and materials, including device nanofabrication, high-resolution microscopies, and theoretical calculations. The results to be achieved by SPEAR are already identified to be of commercial interest for the emerging MRAM industry. Interdisciplinary secondments will be organised, including for every researcher a secondment of 3 months to the industrial sector. SPEAR will organise 5 focus topic sessions on various sub-fields in Spin Orbitronics and open them to junior researchers outside the consortium. It will also organize 5 special training sessions on transferable skills, which is of primary importance for increasing the employability of the ESRs. SPEAR ultimate goal is to train a new generation of highly-skilled researchers able to address future memory technologies and nanoelectronics beyond CMOS. ver más
31/08/2025
4M€
Duración del proyecto: 59 meses Fecha Inicio: 2020-09-03
Fecha Fin: 2025-08-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2020-09-03
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 4M€
Líder del proyecto
ASOC CIC NANOGUNE Actividades auxiliares a la educación asociacion
Perfil tecnológico TRL 4-5 50K