Spin Engineering in Flexible and Functional Two Dimensional Quantum Material Dev...
Spin Engineering in Flexible and Functional Two Dimensional Quantum Material Devices
Can spin integrated circuits (Spin-ICs) with low power-high speed processing capabilities be realized? What are the key ingredients necessary to catapult present-day spintronics to make such a leap? The emergence of two-dimensiona...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
SPIN2D
Spintronics with Non Conventional 2D Materials
158K€
Cerrado
MAGNEPIC
Magnetic Insulators An Enabling Platform for Innovative Spi...
2M€
Cerrado
2DSTOP
Spin transport and spin orbit phenomena in 2D materials
170K€
Cerrado
SORBET
Spin Orbitronics for Electronic Technologies
3M€
Cerrado
RTI2018-096075-A-C22
ESPINTRONICA MOLECULAR APLICADA A TECNOLOGIAS CUANTICAS
121K€
Cerrado
Información proyecto SPINNER
Duración del proyecto: 67 meses
Fecha Inicio: 2021-01-20
Fecha Fin: 2026-08-31
Líder del proyecto
UPPSALA UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Can spin integrated circuits (Spin-ICs) with low power-high speed processing capabilities be realized? What are the key ingredients necessary to catapult present-day spintronics to make such a leap? The emergence of two-dimensional (2D) quantum crystals provides new impetus for exploring ambitious ultralow-power and ultrafast speed prospects of spintronics and nanomagnetism. Atomically thin 2D quantum materials like graphene have created novel possibilities for pure spin current communication, functionalities, and controlling spin phenomena, for inventing entirely new kind of spin components, that could pave the way for spin ICs. SPINNER aims to unleash these prospects leveraging the PI’s pioneering leadership and recent innovations in flexible graphene spin circuits, breakthrough longest spin communication in graphene, and precision characterization of 2D magnetic crystals, aiming for three highly ambitious objectives: (1) Achieving strain control of spin currents and spin Hamiltonian in 2D materials. (2) Enabling field-free pure spin current torque functionalities in graphene spin circuits. (3) Controlling ultrafast spin currents at 2D spinterfaces. The proposed new experiments in SPINNER build upon the PI’s expertise in state-of-the-art spin and charge transport, µ-Hall magnetometry, advanced nanofabrication, and device engineering, augmented with new strengths in magneto-optic Kerr effect and ultrafast spin dynamics experiments. Designed for unprecedented engineering of spin materials and devices, the success of SPINNER will reveal new performance, low-power spin functions, determining the ultimate efficiency and speed of pure spin-current operations for Spin-ICs, leading to multiple new scientific and technological breakthroughs. Realizing SPINNER will make a significant impact on 2D quantum materials, flexible nanoelectronics, nanomagnetism and spintronics, and device physics, proving its high multidisciplinary worth.