Spiking Control Systems: an algorithmic theory for control design of physical ev...
Spiking Control Systems: an algorithmic theory for control design of physical event-based systems
Machines compute with bits and clocks, animals compute with spikes and rhythms. The promise of neuromorphic engineering is that we could transform digital technology by imitating the spiking nature of animal computation, combining...
Machines compute with bits and clocks, animals compute with spikes and rhythms. The promise of neuromorphic engineering is that we could transform digital technology by imitating the spiking nature of animal computation, combining analog adaptation and digital reliability.
Thirty years after Carver Mead’s initial proposal, event cameras have become a technology and neuromorphic computing has become an intense focus both in academia and in industry. Yet, we still lack a proper theory of event-based computation and event-based design. And the very nature of computing with rhythms instead of clocks is still poorly understood.
We propose that the spike is a consequence of analog computing with mixed (that is, positive and negative) feedback. We will develop a control theory of spiking systems by leveraging the control theory of negative feedback systems to a theory of mixed-feedback systems. The mathematical concept of monotonicity provides a modern and unifying foundation for control theory, convex optimisation, and circuit design. Our spiking control theory is grounded in mixed-monotonicity. It is algorithmic because it leverages the methodology of convex optimisation, and it is physical because it leverages the methodology of circuit theory.
A central objective of the proposed research is a novel event-based internal model principle of significance both for control theory and neuroscience. We will investigate the unique features of event-based online adaptation, and suggest the complementary roles of inhibition and excitation in novel spiking control architectures whose learning and adaptation capabilities can be dynamically modulated.
Ultimately, this proposal aims at novel design principles for physical devices that could surpass the learning and adaptation capabilities of current digital machines, advancing the promise of neuromorphic engineering.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.