Speedmeter Quantum back action noise free interferometry for improving the scie...
Speedmeter Quantum back action noise free interferometry for improving the science capabilities of future gravitational wave observatories
The discoveries enabled by observations of gravitational waves (GW) from merging black holes and neutron stars provided us with a stunning glimpse of the immense potential of GW multi-messenger astronomy and cosmology. In order to...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ET-PP
Preparatory Phase for the Einstein Telescope Gravitational W...
12M€
Cerrado
QOOMS
Quantum optics with optomechanical systems
186K€
Cerrado
EAGLE
Exploring quantum Aspects of GravitationaL wavE detectors
222K€
Cerrado
SQZOMS
Squeezed Light Enhancement of Optomechanical Systems
173K€
Cerrado
SingletSQL
Nuclear singlet state in diamond for overcoming the standard...
176K€
Cerrado
SagnacSpeedmeter
Interferometry beyond the Standard Quantum Limit using a Vel...
1M€
Cerrado
Información proyecto SPEED
Duración del proyecto: 61 meses
Fecha Inicio: 2021-08-13
Fecha Fin: 2026-09-30
Líder del proyecto
UNIVERSITEIT MAASTRICHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The discoveries enabled by observations of gravitational waves (GW) from merging black holes and neutron stars provided us with a stunning glimpse of the immense potential of GW multi-messenger astronomy and cosmology. In order to discover new phenomena and better understand the constituents of the Universe and the forces driving it, it is vital to improve the sensitivity of future GW observatories. Indeed, to maximise the observation capacity of future GW observatories such as the Einstein Telescope (ET) it is imperative to go beyond the current quantum noise limit imposed by the uncertainty relation originating from a continuous position measurement of the interferometer mirrors, i.e. [x(t),x(t')]≠0. Quantum mechanics provides speedmeter interferometers (SMI) as a more elegant approach: measuring momentum (speed) of the test masses evades the uncertainty limit, i.e. [p(t),p(t')]=0. However, though SMI have been shown theoretically to offer superior sensitivity compared to currently used Michelson interferometers with squeezed light injection, the SMI concept lags behind in technical readiness and hence is currently not yet considered mature enough to build the baseline for ET.
This grant will enable me to change this. In particular I will focus on two novel SMI concepts, we invented and which (in contrast to earlier SMI concepts) are easily implementable into current long-baseline interferometers. The main objectives of this proposal are: 1) development of the required new optical components and quantum noise analysis tools; 2) experimental demonstration, initially in proof-of-concept table-top experiments, followed by implementation in ETpathfinder, a unique cryogenic interferometer test facility; 3) verification of the SMI concept with complementary quantum technologies such as squeezed light; 4) development of a detailed SMI practical design for ET including a science case detailing possible improvements in astrophysics, cosmology and fundamental physics.