Spectroscopy for Strain-Modulated Terahertz Magnonics
Motivated by the recent discovery of a giant strain-induced blue-shift of Terahertz antiferromagnetic spin waves (magnons) in the spin-orbit Mott insulators Sr2IrO4 and Ca2RuO4 by the PI and his group, the SpecTera project will ex...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PGC2018-098613-B-C21
SPIN-ORBIT DRIVEN PHYSICS AT SURFACES AND INTERFACES OF QUAN...
145K€
Cerrado
UPOV13-3E-1561
Set para medidas de espectroscopía Raman a ultrabajas frecue...
13K€
Cerrado
VORTEX
Exploring electron vortex beams
1M€
Cerrado
ORBITMOL
Orbital molecules self organised states for orbitronics
2M€
Cerrado
DESIQM
Designer superconductivity in interacting quantum metamateri...
213K€
Cerrado
PID2020-120614GB-I00
PROPIEDADES ESPECTRALES Y DE TRANSPORTE DE MATERIALES CUANTI...
105K€
Cerrado
Información proyecto SpecTera
Duración del proyecto: 59 meses
Fecha Inicio: 2024-09-01
Fecha Fin: 2029-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Motivated by the recent discovery of a giant strain-induced blue-shift of Terahertz antiferromagnetic spin waves (magnons) in the spin-orbit Mott insulators Sr2IrO4 and Ca2RuO4 by the PI and his group, the SpecTera project will explore whether strain modulation can be harnessed to confine and guide THz magnons. To probe magnetic order and magnon excitations in inhomogeneous strain environments with high energy and momentum resolution, we will develop a combination of Raman, Brillouin, and resonant x-ray scattering instruments, including a new “momentum microscopy” facility that will generate momentum-space images of magnetic order and excitations with micro-focused x-ray beams. To establish a materials platform for SpecTera, we will use these instruments for surveys of the strain response of different spin-orbit Mott insulators, including compounds with antiferromagnetic order above room temperature. The magnetic ground state and excitations of selected model compounds will be mapped out in carefully tailored strain environments in thermal equilibrium, followed by experiments to probe their response to controlled non-equilibrium situations including thermal gradients and local excitation of magnons by intense sub-THz sources. Inspired by methods developed in semiconductor physics, we will pattern strain profiles by electron beam lithography and assess their ability to serve as magnon conduits. Finally, we will explore the interaction of magnons in spin-orbit Mott insulators with dynamic strain generated by surface acoustic waves.SpecTera will create a new nexus between the rapidly evolving research fields of Terahertz magnonics and correlated-electron physics, and harness the resulting synergies to explore pathways towards a novel architecture of magnonic devices.