The purpose of this proposal is a better mathematical understanding of certain classes of large random matrices. Up to very recently, random matrix theory has been mainly focused on mean-field models with independent entries. In t...
The purpose of this proposal is a better mathematical understanding of certain classes of large random matrices. Up to very recently, random matrix theory has been mainly focused on mean-field models with independent entries. In this proposal I instead consider random matrices that incorporate some nontrivial structure. I focus on two types of structured random matrices that arise naturally in important applications and lead to a rich mathematical behaviour: (1) random graphs with fixed degrees, such as random regular graphs, and (2) random band matrices, which constitute a good model of disordered quantum Hamiltonians.
The goals are strongly motivated by the applications to spectral graph theory and quantum chaos for (1) and to the physics of conductance in disordered media for (2). Specifically, I will work in the following directions. First, derive precise bounds on the locations of the extremal eigenvalues and the spectral gap, ultimately obtaining their limiting distributions. Second, characterize the spectral statistics in the bulk of the spectrum, using both eigenvalue correlation functions on small scales and linear eigenvalue statistics on intermediate mesoscopic scales. Third, prove the delocalization of eigenvectors and derive the distribution of their components. These results will address several of the most important questions about the structured random matrices (1) and (2), such as expansion properties of random graphs, hallmarks of quantum chaos in random regular graphs, crossovers in the eigenvalue statistics of disordered conductors, and quantum diffusion.
To achieve these goals I will combine tools introduced in my previous work, such as local resampling of graphs and subdiagram resummation techniques, and in addition develop novel, robust techniques to address the more challenging goals. I expect the output of this proposal to contribute significantly to the understanding of structured random matrices.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.