Spatiotemporal control of singlet oxygen release from supramolecular hydrogels t...
Spatiotemporal control of singlet oxygen release from supramolecular hydrogels to improve cancer therapy
This research aims to develop novel supramolecular hydrogels and study their application as singlet oxygen (1O2) carriers. In medicine, 1O2 generated in-vivo through photochemistry has been used to treat a variety of ailments incl...
ver más
Descripción del proyecto
This research aims to develop novel supramolecular hydrogels and study their application as singlet oxygen (1O2) carriers. In medicine, 1O2 generated in-vivo through photochemistry has been used to treat a variety of ailments including bacterial infections, acne, and several types of cancer. Though promising, this approach suffers from drawbacks such as diminished effectiveness in hypoxic conditions, both native and induced and lack of control over the total concentration and dosage of active 1O2. Recently, endoperoxides (EPO) have been identified as a potential solution for those, as they are self-contained sources of 1O2 produced ex-situ. However, they still do not allow for precise spatiotemporal control of 1O2 release, which is desirable to maximize for effectiveness of the treatment. Grafting EPOs on solid supports has been explored as a solution, but the state-of-the-art materials rely on complicated supports with low EPO loadings and thermal release mechanisms. Herein, we propose a new strategy for spatiotemporal control of 1O2 through the unprecedented use of hydrogels as EPO carriers. Hydrogels offer an easy to control and stable, but not persistent matrix in which the main component is water. The OTHO (oxotriphenylhexanoate) hydrogels enjoy unparalleled modularity, due to their highly robust and selective multicomponent one-pot synthesis. Thus, we will synthesize a range of OTHOs containing EPO units and perform detailed studies by rheology, solid-state NMR, small-angle x-ray and neutron scattering and electron microscopy to understand the properties and behavior of the resulting hydrogels. The biocompatibility and cytotoxic profile of the materials will be investigated against yeast cells expressing human disease markers. This will pave the way for a new breed of supramolecular pharmacology materials for 1O2 therapy against cancer.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.