Spatiotemporal and In situ Spectroscopic Crystallization Studies of Microporous...
Spatiotemporal and In situ Spectroscopic Crystallization Studies of Microporous Materials
Microporous materials are crystalline, framework structures that contain pores of less than 2 nm. They commonly exhibit robust hydrothermal stability and are used in a wide range of areas including catalysis, separations, ion exch...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2021-128047NB-I00
CONTROL CONFORMACIONAL DE PLATAFORMAS MOLECULARES PARA EL DI...
151K€
Cerrado
CTQ2015-69153-C2-2-R
APLICACIONES CATALITICAS DE COMPUESTOS ORGANOMETALICOS INMOV...
67K€
Cerrado
MAT2012-37160
SINTESIS DE NUEVOS MATERIALES MICROPOROSOS BASADOS EN EL USO...
132K€
Cerrado
CSIC08-3E-061
ANALIZADOR SIMULTÁNEO DE CALORIMETRÍA DIFERENCIAL DE BARRIDO...
184K€
Cerrado
UNZA15-EE-3617
Equipo de fisisorción y quimisorción para caracterización de...
121K€
Cerrado
MAT2009-14528-C02-02
SUBPROYECTO: CARACTERIZACION DE CATALIZADORES POROSOS MEDIAN...
109K€
Cerrado
Información proyecto ZeoSynMech
Duración del proyecto: 30 meses
Fecha Inicio: 2016-02-25
Fecha Fin: 2018-08-31
Líder del proyecto
UNIVERSITEIT UTRECHT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
166K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Microporous materials are crystalline, framework structures that contain pores of less than 2 nm. They commonly exhibit robust hydrothermal stability and are used in a wide range of areas including catalysis, separations, ion exchange and adsorption where their shape and size selectivity often shows superior performance over other materials. They are formed by crystallization from amorphous inorganic oxides, but the underlying mechanisms that govern the crystallization of microporous materials are poorly understood, despite extensive work in this area. This lack of understanding means that the development of new materials and compositions is an inefficient trial and error process mainly guided by heuristics. In this work I propose to study the formation principles of microporous materials through 3D spatiotemporal element mapping and monitoring the incorporation of spectroscopically active and catalytically interesting heteroatoms, namely copper and titanium, in distinct framework structures. This proposal uses two distinct approaches (ex-situ STXM and in-situ spectroscopy) to study two different inorganic chemistries (aluminophosphate and silicate) with two different spectroscopically active heteroatoms (copper and titanium) and four different microporous material frameworks (AFI, CHA, MFI and MWW) in order to probe the underlying crystallization mechanisms behind microporous material synthesis and crystallization. The unprecedented combination of 3D spatiotemporal element mapping at various stages of crystallization combined with in-situ spectroscopic studies of catalytically active elements will lead to previously unavailable information about the underlying mechanisms governing the formation of these materials. These insights will lead to innovations in synthesizing both known and novel materials and compositions.