Space-time visualization of photo-excited carrier dynamics in ferroelectric sola...
Space-time visualization of photo-excited carrier dynamics in ferroelectric solar-energy converters by ultrafast electron microscopy
Giant bulk photovoltaic effect in non-centrosymmetric ferroelectric materials is currently gaining tremendous research interest due to its above-bandgap photovoltage and the observed output voltage is around 3-4 orders of magnitud...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTI2018-101662-B-I00
MODELIZACION Y COMPUTACION PARA UNA NUEVA GENERACION DE CELU...
182K€
Cerrado
UNIFY
Unification of the best piezoelectric and photovoltaic prope...
1M€
Cerrado
CNS2023-145151
Materiales con funcionalidad eléctrica, magnética, óptica o...
200K€
Cerrado
FENCES
Ferroelectric Nanocomposites for Enhanced Solar Energy Effic...
2M€
Cerrado
FERROVOLT
For a better understanding and design of ferroelectric photo...
176K€
Cerrado
AMETIST
Advanced III V Materials and Processes Enabling Ultrahigh ef...
2M€
Cerrado
Información proyecto SpaceTimeFerro
Duración del proyecto: 29 meses
Fecha Inicio: 2022-07-26
Fecha Fin: 2024-12-31
Líder del proyecto
UNIVERSITAT KONSTANZ
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
190K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Giant bulk photovoltaic effect in non-centrosymmetric ferroelectric materials is currently gaining tremendous research interest due to its above-bandgap photovoltage and the observed output voltage is around 3-4 orders of magnitude higher than the Si-solar cells. Hence, the ferroelectric photovoltaic response is considered the next-generation photovoltaic device. However, researchers currently lack a profound understanding of the exact mechanism of the bulk photovoltaic effect, and the proposed mechanisms are contradictory to each other. This, in turn, restricts the progress of the field towards efficient solar cells. The difficult part of finding the exact mechanism is due to ultrafast carrier dynamics and atomic relaxation times are of the order of ≈ 0.1 to 10 femtoseconds, which made it experimentally inaccessible. At present, the excellent infrastructure and facilities of my host institute dealing with the ultrafast carrier dynamics can record the meticulous dynamics in space-time resolution and hence can provide the exact mechanism towards the above bandgap photovoltage in the ferroelectric system. Therefore, through this project, we are going to investigate the origin of the anomalous bulk photovoltaic effect in perovskite ferroelectric oxides by filming the ultrafast photo-absorption and subsequent photo-excited carrier relaxation dynamics with femtosecond time resolution and nanometre spatial resolution using laser-driven electron microscopy. In contrast to the spectroscopic approach, ultrafast electron pulses in a femtosecond electron microscope or diffraction apparatus can provide nanometre spatial and femtosecond temporal resolutions at the same time and hence can provide a movie of evolving electromagnetic field in space and time. Based on the data generated, a comprehensive physical mechanism will be put forth, which will act as guidance for the selection and design of future ferroelectric systems for an improved photovoltaic response.