Solid liquid thermoelectric systems with uncorrelated properties
More than 60% of the global power is lost as waste heat. Thermoelectric (TE) materials can convert vast amounts of this waste heat into electricity and significantly contribute to the current energy challenge. Despite large effort...
ver más
Descripción del proyecto
More than 60% of the global power is lost as waste heat. Thermoelectric (TE) materials can convert vast amounts of this waste heat into electricity and significantly contribute to the current energy challenge. Despite large efforts to identify better TE materials, still, the TE technology is limited by low efficiency. One of the two performance improvement routes, thermal conductivity reduction, has already reached its limit, which makes the other route, power factor (PF) improvements, crucial. Current strategies targeting PF enhancement have only reached modest improvements, mainly due to the adverse interdependence of the Seebeck coefficient (S) and the electrical conductivity (σ), which produces a decrease in one of these properties if the other is increased. This is a serious obstacle to achieve the widespread application of the TE technology, since PF=σS^2. UncorrelaTEd will come true the dream of breaking the S-σ correlation by introducing a new paradigm in thermoelectricity that comes from the connection of TEs and electrochemistry, using a properly designed hybrid system, formed by a porous TE solid permeated by a liquid electrolyte. The porous solid provides a low thermal conductivity, whereas the electrolyte tactically interacts with the solid to enlarge the PF. Unprecedented PF improvements (above 35 times) have already been observed by UncorrelaTEd members in this system using a material with modest TE properties. UncorrelaTEd aims at extending these improvements to different materials (bismuth telluride alloys, oxides, and polymers) with state-of-the-art TE properties, potentially leading to an extraordinarily powerful technology able to provide more than 4 times larger PF than state-of-the-art low-mid temperature (<150 ºC) materials and ZTs>3. This will enable the TE technology to be implemented in many areas, such as self-powered sensors, empowering the elimination of batteries, textiles, factories, power plants, and combustion engines.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.